Ji Zhang


2021

pdf bib
Turn-Level User Satisfaction Estimation in E-commerce Customer Service
Runze Liang | Ryuichi Takanobu | Feng-Lin Li | Ji Zhang | Haiqing Chen | Minlie Huang
Proceedings of The 4th Workshop on e-Commerce and NLP

User satisfaction estimation in the dialogue-based customer service is critical not only for helping developers find the system defects, but also making it possible to get timely human intervention for dissatisfied customers. In this paper, we investigate the problem of user satisfaction estimation in E-commerce customer service. In order to apply the estimator to online services for timely human intervention, we need to estimate the satisfaction score at each turn. However, in actual scenario we can only collect the satisfaction labels for the whole dialogue sessions via user feedback. To this end, we formalize the turn-level satisfaction estimation as a reinforcement learning problem, in which the model can be optimized with only session-level satisfaction labels. We conduct experiments on the dataset collected from a commercial customer service system, and compare our model with the supervised learning models. Extensive experiments show that the proposed method outperforms all the baseline models.

pdf bib
Segment, Mask, and Predict: Augmenting Chinese Word Segmentation with Self-Supervision
Mieradilijiang Maimaiti | Yang Liu | Yuanhang Zheng | Gang Chen | Kaiyu Huang | Ji Zhang | Huanbo Luan | Maosong Sun
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent state-of-the-art (SOTA) effective neural network methods and fine-tuning methods based on pre-trained models (PTM) have been used in Chinese word segmentation (CWS), and they achieve great results. However, previous works focus on training the models with the fixed corpus at every iteration. The intermediate generated information is also valuable. Besides, the robustness of the previous neural methods is limited by the large-scale annotated data. There are a few noises in the annotated corpus. Limited efforts have been made by previous studies to deal with such problems. In this work, we propose a self-supervised CWS approach with a straightforward and effective architecture. First, we train a word segmentation model and use it to generate the segmentation results. Then, we use a revised masked language model (MLM) to evaluate the quality of the segmentation results based on the predictions of the MLM. Finally, we leverage the evaluations to aid the training of the segmenter by improved minimum risk training. Experimental results show that our approach outperforms previous methods on 9 different CWS datasets with single criterion training and multiple criteria training and achieves better robustness.

pdf bib
KACE: Generating Knowledge Aware Contrastive Explanations for Natural Language Inference
Qianglong Chen | Feng Ji | Xiangji Zeng | Feng-Lin Li | Ji Zhang | Haiqing Chen | Yin Zhang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In order to better understand the reason behind model behaviors (i.e., making predictions), most recent works have exploited generative models to provide complementary explanations. However, existing approaches in NLP mainly focus on “WHY A” rather than contrastive “WHY A NOT B”, which is shown to be able to better distinguish confusing candidates and improve data efficiency in other research fields.In this paper, we focus on generating contrastive explanations with counterfactual examples in NLI and propose a novel Knowledge-Aware Contrastive Explanation generation framework (KACE).Specifically, we first identify rationales (i.e., key phrases) from input sentences, and use them as key perturbations for generating counterfactual examples. After obtaining qualified counterfactual examples, we take them along with original examples and external knowledge as input, and employ a knowledge-aware generative pre-trained language model to generate contrastive explanations. Experimental results show that contrastive explanations are beneficial to fit the scenarios by clarifying the difference between the predicted answer and other possible wrong ones. Moreover, we train an NLI model enhanced with contrastive explanations and achieves an accuracy of 91.9% on SNLI, gaining improvements of 5.7% against ETPA (“Explain-Then-Predict-Attention”) and 0.6% against NILE (“WHY A”).

2020

pdf bib
Keep it Consistent: Topic-Aware Storytelling from an Image Stream via Iterative Multi-agent Communication
Ruize Wang | Zhongyu Wei | Ying Cheng | Piji Li | Haijun Shan | Ji Zhang | Qi Zhang | Xuanjing Huang
Proceedings of the 28th International Conference on Computational Linguistics

Visual storytelling aims to generate a narrative paragraph from a sequence of images automatically. Existing approaches construct text description independently for each image and roughly concatenate them as a story, which leads to the problem of generating semantically incoherent content. In this paper, we propose a new way for visual storytelling by introducing a topic description task to detect the global semantic context of an image stream. A story is then constructed with the guidance of the topic description. In order to combine the two generation tasks, we propose a multi-agent communication framework that regards the topic description generator and the story generator as two agents and learn them simultaneously via iterative updating mechanism. We validate our approach on VIST dataset, where quantitative results, ablations, and human evaluation demonstrate our method’s good ability in generating stories with higher quality compared to state-of-the-art methods.

pdf bib
Target-Guided Structured Attention Network for Target-Dependent Sentiment Analysis
Ji Zhang | Chengyao Chen | Pengfei Liu | Chao He | Cane Wing-Ki Leung
Transactions of the Association for Computational Linguistics, Volume 8

Target-dependent sentiment analysis (TDSA) aims to classify the sentiment of a text towards a given target. The major challenge of this task lies in modeling the semantic relatedness between a target and its context sentence. This paper proposes a novel Target-Guided Structured Attention Network (TG-SAN), which captures target-related contexts for TDSA in a fine-to-coarse manner. Given a target and its context sentence, the proposed TG-SAN first identifies multiple semantic segments from the sentence using a target-guided structured attention mechanism. It then fuses the extracted segments based on their relatedness with the target for sentiment classification. We present comprehensive comparative experiments on three benchmarks with three major findings. First, TG-SAN outperforms the state-of-the-art by up to 1.61% and 3.58% in terms of accuracy and Marco-F1, respectively. Second, it shows a strong advantage in determining the sentiment of a target when the context sentence contains multiple semantic segments. Lastly, visualization results show that the attention scores produced by TG-SAN are highly interpretable

2018

pdf bib
Semi-Autoregressive Neural Machine Translation
Chunqi Wang | Ji Zhang | Haiqing Chen
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Existing approaches to neural machine translation are typically autoregressive models. While these models attain state-of-the-art translation quality, they are suffering from low parallelizability and thus slow at decoding long sequences. In this paper, we propose a novel model for fast sequence generation — the semi-autoregressive Transformer (SAT). The SAT keeps the autoregressive property in global but relieves in local and thus are able to produce multiple successive words in parallel at each time step. Experiments conducted on English-German and Chinese-English translation tasks show that the SAT achieves a good balance between translation quality and decoding speed. On WMT’14 English-German translation, the SAT achieves 5.58× speedup while maintaining 88% translation quality, significantly better than the previous non-autoregressive methods. When produces two words at each time step, the SAT is almost lossless (only 1% degeneration in BLEU score).