This paper investigates the sentiment analysis task from a novel perspective by incorporating sentiment knowledge and eye movement into a graph architecture, aiming to draw the eye movement-based sentiment relationships for learning the sentiment expression of the context. To be specific, we first explore a linguistic probing eye movement paradigm to extract eye movement features based on the close relationship between linguistic features and the early and late processes of human reading behavior. Furthermore, to derive eye movement features with sentiment concepts, we devise a novel weighting strategy to integrate sentiment scores extracted from affective commonsense knowledge into eye movement features, called sentiment-eye movement weights. Then, the sentiment-eye movement weights are exploited to build the sentiment-eye movement guided graph (SEMGraph) model, so as to model the intricate sentiment relationships in the context. Experimental results on two sentiment analysis datasets with eye movement signals and three sentiment analysis datasets without eye movement signals show that the proposed SEMGraph achieves state-of-the-art performance, and can also be directly generalized to those sentiment analysis datasets without eye movement signals.
Argument mining (AM) is a challenging task as it requires recognizing the complex argumentation structures involving multiple subtasks.To handle all subtasks of AM in an end-to-end fashion, previous works generally transform AM into a dependency parsing task.However, such methods largely require complex pre- and post-processing to realize the task transformation.In this paper, we investigate the end-to-end AM task from a novel perspective by proposing a generative framework, in which the expected outputs of AM are framed as a simple target sequence. Then, we employ a pre-trained sequence-to-sequence language model with a constrained pointer mechanism (CPM) to model the clues for all the subtasks of AM in the light of the target sequence. Furthermore, we devise a reconstructed positional encoding (RPE) to alleviate the order biases induced by the autoregressive generation paradigm.Experimental results show that our proposed framework achieves new state-of-the-art performance on two AM benchmarks.
The goal of argumentation mining is to automatically extract argumentation structures from argumentative texts. Most existing methods determine argumentative relations by exhaustively enumerating all possible pairs of argument components, which suffer from low efficiency and class imbalance. Moreover, due to the complex nature of argumentation, there is, so far, no universal method that can address both tree and non-tree structured argumentation. Towards these issues, we propose a neural transition-based model for argumentation mining, which incrementally builds an argumentation graph by generating a sequence of actions, avoiding inefficient enumeration operations. Furthermore, our model can handle both tree and non-tree structured argumentation without introducing any structural constraints. Experimental results show that our model achieves the best performance on two public datasets of different structures.
Current approaches to empathetic response generation focus on learning a model to predict an emotion label and generate a response based on this label and have achieved promising results. However, the emotion cause, an essential factor for empathetic responding, is ignored. The emotion cause is a stimulus for human emotions. Recognizing the emotion cause is helpful to better understand human emotions so as to generate more empathetic responses. To this end, we propose a novel framework that improves empathetic response generation by recognizing emotion cause in conversations. Specifically, an emotion reasoner is designed to predict a context emotion label and a sequence of emotion cause-oriented labels, which indicate whether the word is related to the emotion cause. Then we devise both hard and soft gated attention mechanisms to incorporate the emotion cause into response generation. Experiments show that incorporating emotion cause information improves the performance of the model on both emotion recognition and response generation.
In this paper, we explore a novel solution of constructing a heterogeneous graph for each instance by leveraging aspect-focused and inter-aspect contextual dependencies for the specific aspect and propose an Interactive Graph Convolutional Networks (InterGCN) model for aspect sentiment analysis. Specifically, an ordinary dependency graph is first constructed for each sentence over the dependency tree. Then we refine the graph by considering the syntactical dependencies between contextual words and aspect-specific words to derive the aspect-focused graph. Subsequently, the aspect-focused graph and the corresponding embedding matrix are fed into the aspect-focused GCN to capture the key aspect and contextual words. Besides, to interactively extract the inter-aspect relations for the specific aspect, an inter-aspect GCN is adopted to model the representations learned by aspect-focused GCN based on the inter-aspect graph which is constructed by the relative dependencies between the aspect words and other aspects. Hence, the model can be aware of the significant contextual and aspect words when interactively learning the sentiment features for a specific aspect. Experimental results on four benchmark datasets illustrate that our proposed model outperforms state-of-the-art methods and substantially boosts the performance in comparison with BERT.
Emotion-cause pair extraction aims to extract all potential pairs of emotions and corresponding causes from unannotated emotion text. Most existing methods are pipelined framework, which identifies emotions and extracts causes separately, leading to a drawback of error propagation. Towards this issue, we propose a transition-based model to transform the task into a procedure of parsing-like directed graph construction. The proposed model incrementally generates the directed graph with labeled edges based on a sequence of actions, from which we can recognize emotions with the corresponding causes simultaneously, thereby optimizing separate subtasks jointly and maximizing mutual benefits of tasks interdependently. Experimental results show that our approach achieves the best performance, outperforming the state-of-the-art methods by 6.71% (p<0.01) in F1 measure.
Attention-based neural models were employed to detect the different aspects and sentiment polarities of the same target in targeted aspect-based sentiment analysis (TABSA). However, existing methods do not specifically pre-train reasonable embeddings for targets and aspects in TABSA. This may result in targets or aspects having the same vector representations in different contexts and losing the context-dependent information. To address this problem, we propose a novel method to refine the embeddings of targets and aspects. Such pivotal embedding refinement utilizes a sparse coefficient vector to adjust the embeddings of target and aspect from the context. Hence the embeddings of targets and aspects can be refined from the highly correlative words instead of using context-independent or randomly initialized vectors. Experiment results on two benchmark datasets show that our approach yields the state-of-the-art performance in TABSA task.
Emotion cause analysis, which aims to identify the reasons behind emotions, is a key topic in sentiment analysis. A variety of neural network models have been proposed recently, however, these previous models mostly focus on the learning architecture with local textual information, ignoring the discourse and prior knowledge, which play crucial roles in human text comprehension. In this paper, we propose a new method to extract emotion cause with a hierarchical neural model and knowledge-based regularizations, which aims to incorporate discourse context information and restrain the parameters by sentiment lexicon and common knowledge. The experimental results demonstrate that our proposed method achieves the state-of-the-art performance on two public datasets in different languages (Chinese and English), outperforming a number of competitive baselines by at least 2.08% in F-measure.
Inferring the agreement/disagreement relation in debates, especially in online debates, is one of the fundamental tasks in argumentation mining. The expressions of agreement/disagreement usually rely on argumentative expressions in text as well as interactions between participants in debates. Previous works usually lack the capability of jointly modeling these two factors. To alleviate this problem, this paper proposes a hybrid neural attention model which combines self and cross attention mechanism to locate salient part from textual context and interaction between users. Experimental results on three (dis)agreement inference datasets show that our model outperforms the state-of-the-art models.
Combining the virtues of probability graphic models and neural networks, Conditional Variational Auto-encoder (CVAE) has shown promising performance in applications such as response generation. However, existing CVAE-based models often generate responses from a single latent variable which may not be sufficient to model high variability in responses. To solve this problem, we propose a novel model that sequentially introduces a series of latent variables to condition the generation of each word in the response sequence. In addition, the approximate posteriors of these latent variables are augmented with a backward Recurrent Neural Network (RNN), which allows the latent variables to capture long-term dependencies of future tokens in generation. To facilitate training, we supplement our model with an auxiliary objective that predicts the subsequent bag of words. Empirical experiments conducted on Opensubtitle and Reddit datasets show that the proposed model leads to significant improvement on both relevance and diversity over state-of-the-art baselines.
Emotion cause extraction aims to identify the reasons behind a certain emotion expressed in text. It is a much more difficult task compared to emotion classification. Inspired by recent advances in using deep memory networks for question answering (QA), we propose a new approach which considers emotion cause identification as a reading comprehension task in QA. Inspired by convolutional neural networks, we propose a new mechanism to store relevant context in different memory slots to model context information. Our proposed approach can extract both word level sequence features and lexical features. Performance evaluation shows that our method achieves the state-of-the-art performance on a recently released emotion cause dataset, outperforming a number of competitive baselines by at least 3.01% in F-measure.