Jiageng Wu
2024
Revealing COVID-19’s Social Dynamics: Diachronic Semantic Analysis of Vaccine and Symptom Discourse on Twitter
Zeqiang Wang
|
Jiageng Wu
|
Yuqi Wang
|
Wei Wang Xjtlu
|
Jie Yang
|
Nishanth R. Sastry
|
Jon Johnson
|
Suparna De
Findings of the Association for Computational Linguistics: EMNLP 2024
Social media is recognized as an important source for deriving insights into public opinion dynamics and social impacts due to the vast textual data generated daily and the ‘unconstrained’ behavior of people interacting on these platforms. However, such analyses prove challenging due to the semantic shift phenomenon, where word meanings evolve over time. This paper proposes an unsupervised dynamic word embedding method to capture longitudinal semantic shifts in social media data without predefined anchor words. The method leverages word co-occurrence statistics and dynamic updating to adapt embeddings over time, addressing the challenges of data sparseness, imbalanced distributions, and synergistic semantic effects. Evaluated on a large COVID-19 Twitter dataset, the method reveals semantic evolution patterns of vaccine- and symptom-related entities across different pandemic stages, and their potential correlations with real-world statistics. Our key contributions include the dynamic embedding technique, empirical analysis of COVID-19 semantic shifts, and discussions on enhancing semantic shift modeling for computational social science research. This study enables capturing longitudinal semantic dynamics on social media to understand public discourse and collective phenomena.
2023
YATO: Yet Another deep learning based Text analysis Open toolkit
Zeqiang Wang
|
Yile Wang
|
Jiageng Wu
|
Zhiyang Teng
|
Jie Yang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
We introduce YATO, an open-source, easy-to-use toolkit for text analysis with deep learning. Different from existing heavily engineered toolkits and platforms, YATO is lightweight and user-friendly for researchers from cross-disciplinary areas. Designed in a hierarchical structure, YATO supports free combinations of three types of widely used features including 1) traditional neural networks (CNN, RNN, etc.); 2) pre-trained language models (BERT, RoBERTa, ELECTRA, etc.); and 3) user-customized neural features via a simple configurable file. Benefiting from the advantages of flexibility and ease of use, YATO can facilitate fast reproduction and refinement of state-of-the-art NLP models, and promote the cross-disciplinary applications of NLP techniques. The code, examples, and documentation are publicly available at https://github.com/jiesutd/YATO. A demo video is also available at https://www.youtube.com/playlist?list=PLJ0mhzMcRuDUlTkzBfAftOqiJRxYTTjXH.
Search
Co-authors
- Zeqiang Wang 2
- Jie Yang 2
- Yile Wang 1
- Zhiyang Teng 1
- Yuqi Wang 1
- show all...