2024
pdf
bib
abs
E2-LLM: Efficient and Extreme Length Extension of Large Language Models
Jiaheng Liu
|
ZhiqiBai ZhiqiBai
|
Yuanxing Zhang
|
Chenchen Zhang
|
YuangZh YuangZh
|
Ge Zhang
|
JiakaiWang JiakaiWang
|
Haoran Que
|
Yukang Chen
|
Wenbo Su
|
Tiezheng Ge
|
Jie Fu
|
Wenhu Chen
|
Bo Zheng
Findings of the Association for Computational Linguistics: ACL 2024
Training Large Language Models (LLMs) to process extensive context lengths incurs prohibitive computational costs. Prevailing techniques for extending context capabilities in LLMs typically require not only additional training procedures but also access to datasets with long context (e.g., sequences of 32K tokens), presupposing substantial GPU expenditures. To address the aforementioned issues, we introduce a novel solution named Efficient and Extreme length extension for Large Language Models (E2-LLM). E2-LLM entails a singular training process over considerably short sequences (e.g., 4K tokens), which greatly mitigates the cost of continual-pretraining or fine-tuning. Within the training phase, we incorporate a dual augmentation strategy with Rotary Position Embeddings (RoPE) that adjusts the scale and position indices across distinct training samples. E 2 -LLM is meticulously designed to enhance the model’s robustness to diverse relative positions. The experimental results on multiple benchmark datasets demonstrate the superior performance of E 2 -LLM on demanding tasks of processing long contexts.
pdf
bib
abs
ConceptMath: A Bilingual Concept-wise Benchmark for Measuring Mathematical Reasoning of Large Language Models
Yanan Wu
|
Jie Liu
|
Xingyuan Bu
|
Jiaheng Liu
|
Zhanhui Zhou
|
Yuanxing Zhang
|
Chenchen Zhang
|
ZhiqiBai ZhiqiBai
|
Haibin Chen
|
Tiezheng Ge
|
Wanli Ouyang
|
Wenbo Su
|
Bo Zheng
Findings of the Association for Computational Linguistics: ACL 2024
This paper introduces ConceptMath, a bilingual (English and Chinese), fine-grained benchmark that evaluates concept-wise mathematical reasoning of Large Language Models (LLMs). Unlike traditional benchmarks that evaluate general mathematical reasoning with an average accuracy, ConceptMath systemically organizes math problems under a hierarchy of math concepts, so that mathematical reasoning can be evaluated at different granularity with concept-wise accuracies. Based on our ConcepthMath, we then evaluate a broad range of LLMs, and we observe existing LLMs, though achieving high average accuracies on traditional benchmarks, exhibit significant performance variations across different math concepts and may even fail catastrophically on the most basic ones. Besides, we also introduce an efficient fine-tuning strategy to enhance the weaknesses of existing LLMs. Finally, we hope ConceptMath could guide the developers to understand the fine-grained mathematical abilities of their models and facilitate the growth of foundation models. Code is available at https://github.com/conceptmath/conceptmath.
pdf
bib
abs
RoleLLM: Benchmarking, Eliciting, and Enhancing Role-Playing Abilities of Large Language Models
Noah Wang
|
Z.y. Peng
|
Haoran Que
|
Jiaheng Liu
|
Wangchunshu Zhou
|
Yuhan Wu
|
Hongcheng Guo
|
Ruitong Gan
|
Zehao Ni
|
Jian Yang
|
Man Zhang
|
Zhaoxiang Zhang
|
Wanli Ouyang
|
Ke Xu
|
Wenhao Huang
|
Jie Fu
|
Junran Peng
Findings of the Association for Computational Linguistics: ACL 2024
The advent of Large Language Models (LLMs) has paved the way for complex tasks such as role-playing, which enhances user interactions by enabling models to imitate various characters. However, the closed-source nature of state-of-the-art LLMs and their general-purpose training limit role-playing optimization. In this paper, we introduce RoleLLM, a framework to benchmark, elicit, and enhance role-playing abilities in LLMs. RoleLLM comprises four stages: (1) Role Profile Construction for 100 roles; (2) Context-Based Instruction Generation (Context-Instruct) for role-specific knowledge extraction; (3) Role Prompting using GPT (RoleGPT) for speaking style imitation; and (4) Role-Conditioned Instruction Tuning (RoCIT) for fine-tuning open-source models along with role customization. By Context-Instruct and RoleGPT, we create RoleBench, the first systematic and fine-grained character-level benchmark dataset for role-playing with 168,093 samples. Moreover, RoCIT on RoleBench yields RoleLLaMA (English) and RoleGLM (Chinese), significantly enhancing role-playing abilities and even achieving comparable results with RoleGPT (using GPT-4).
pdf
bib
abs
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
Shilong Li
|
Yancheng He
|
Hangyu Guo
|
Xingyuan Bu
|
Ge Bai
|
Jie Liu
|
Jiaheng Liu
|
Xingwei Qu
|
Yangguang Li
|
Wanli Ouyang
|
Wenbo Su
|
Bo Zheng
Findings of the Association for Computational Linguistics: EMNLP 2024
Long-context capabilities are essential for large language models (LLMs) to tackle complex and long-input tasks. Despite numerous efforts made to optimize LLMs for long contexts, challenges persist in robustly processing long inputs. In this paper, we introduce GraphReader, a graph-based agent system designed to handle long texts by structuring them into a graph and employing an agent to explore this graph autonomously. Upon receiving a question, the agent first undertakes a step-by-step analysis and devises a rational plan. It then invokes a set of predefined functions to read node content and neighbors, facilitating a coarse-to-fine exploration of the graph. Throughout the exploration, the agent continuously records new insights and reflects on current circumstances to optimize the process until it has gathered sufficient information to generate an answer. Experimental results on the LV-Eval dataset reveal that GraphReader using a 4k context window, consistently outperforms GPT-4-128k across context lengths from 16k to 256k by a large margin. Additionally, our approach demonstrates superior performance on four challenging single-hop and multi-hop benchmarks.
pdf
bib
abs
UniCoder: Scaling Code Large Language Model via Universal Code
Tao Sun
|
Linzheng Chai
|
Jian Yang
|
Yuwei Yin
|
Hongcheng Guo
|
Jiaheng Liu
|
Bing Wang
|
Liqun Yang
|
Zhoujun Li
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks.When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code.
pdf
bib
abs
Towards Real-world Scenario: Imbalanced New Intent Discovery
Shun Zhang
|
Yan Chaoran
|
Jian Yang
|
Jiaheng Liu
|
Ying Mo
|
Jiaqi Bai
|
Tongliang Li
|
Zhoujun Li
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
New Intent Discovery (NID) aims at detecting known and previously undefined categories of user intent by utilizing limited labeled and massive unlabeled data. Most prior works often operate under the unrealistic assumption that the distribution of both familiar and new intent classes is uniform, overlooking the skewed and long-tailed distributions frequently encountered in real-world scenarios. To bridge the gap, our work introduces the imbalanced new intent discovery i-NID task, which seeks to identify familiar and novel intent categories within long-tailed distributions. A new benchmark baNID-Bench comprised of three datasets is created to simulate the real-world long-tail distributions. ImbaNID-Bench ranges from broad cross-domain to specific single-domain intent categories, providing a thorough representation of practical use cases. Besides, a robust baseline model ImbaNID is proposed to achieve cluster-friendly intent representations. It includes three stages: model pre-training, generation of reliable pseudo-labels, and robust representation learning that strengthens the model performance to handle the intricacies of real-world data distributions. Our extensive experiments on previous benchmarks and the newly established benchmark demonstrate the superior performance of ImbaNID in addressing the i-NID task, highlighting its potential as a powerful baseline for uncovering and categorizing user intents in imbalanced and long-tailed distributions.
pdf
bib
abs
MT-Bench-101: A Fine-Grained Benchmark for Evaluating Large Language Models in Multi-Turn Dialogues
Ge Bai
|
Jie Liu
|
Xingyuan Bu
|
Yancheng He
|
Jiaheng Liu
|
Zhanhui Zhou
|
Zhuoran Lin
|
Wenbo Su
|
Tiezheng Ge
|
Bo Zheng
|
Wanli Ouyang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The advent of Large Language Models (LLMs) has drastically enhanced dialogue systems. However, comprehensively evaluating the dialogue abilities of LLMs remains a challenge. Previous benchmarks have primarily focused on single-turn dialogues or provided coarse-grained and incomplete assessments of multi-turn dialogues, overlooking the complexity and fine-grained nuances of real-life dialogues. To address this issue, we introduce MT-Bench-101, specifically designed to evaluate the fine-grained abilities of LLMs in multi-turn dialogues. By conducting a detailed analysis of real multi-turn dialogue data, we construct a three-tier hierarchical ability taxonomy comprising 4208 turns across 1388 multi-turn dialogues in 13 distinct tasks. We then evaluate 21 popular LLMs based on MT-Bench-101, conducting comprehensive analyses from both ability and task perspectives and observing differing trends in LLMs performance across dialogue turns within various tasks. Further analysis indicates that neither utilizing common alignment techniques nor chat-specific designs has led to obvious enhancements in the multi-turn abilities of LLMs. Extensive case studies suggest that our designed tasks accurately assess the corresponding multi-turn abilities. The data and code are available at https://github.com/mtbench101/mt-bench-101.
pdf
bib
abs
Emulated Disalignment: Safety Alignment for Large Language Models May Backfire!
Zhanhui Zhou
|
Jie Liu
|
Zhichen Dong
|
Jiaheng Liu
|
Chao Yang
|
Wanli Ouyang
|
Yu Qiao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) undergo safety alignment to ensure safe conversations with humans. However, this paper introduces a training-free attack method capable of reversing safety alignment, converting the outcomes of stronger alignment into greater potential for harm by accessing only LLM output token distributions. Specifically, our method achieves this reversal by contrasting the output token distribution of a safety-aligned language model (e.g., Llama-2-chat) against its pre-trained version (e.g., Llama-2), so that the token predictions are shifted towards the opposite direction of safety alignment.We name this method emulated disalignment (ED) because sampling from this contrastive distribution provably emulates the result of fine-tuning to minimize a safety reward.Our experiments with ED across three evaluation datasets and four model families (Llama-1, Llama-2, Mistral, and Alpaca) show that ED doubles the harmfulness of pre-trained models and outperforms strong baselines, achieving the highest harmful rates in 43 out of 48 evaluation subsets by a large margin.Eventually, given ED’s reliance on language model output token distributions, which particularly compromises open-source models, our findings highlight the need to reassess the open accessibility of language models, even if they have been safety-aligned.Code is available at https://github.com/ZHZisZZ/emulated-disalignment.
pdf
bib
abs
m3P: Towards Multimodal Multilingual Translation with Multimodal Prompt
Jian Yang
|
Hongcheng Guo
|
Yuwei Yin
|
Jiaqi Bai
|
Bing Wang
|
Jiaheng Liu
|
Xinnian Liang
|
LinZheng Chai
|
Liqun Yang
|
Zhoujun Li
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Multilingual translation supports multiple translation directions by projecting all languages in a shared space, but the translation quality is undermined by the difference between languages in the text-only modality, especially when the number of languages is large. To bridge this gap, we introduce visual context as the universal language-independent representation to facilitate multilingual translation. In this paper, we propose a framework to leverage the multimodal prompt to guide the Multimodal Multilingual Neural Machine Translation (m3P), which aligns the representations of different languages with the same meaning and generates the conditional vision-language memory for translation. We construct a multilingual multimodal instruction dataset (InstrMulti102) to support 102 languages Our method aims to minimize the representation distance of different languages by regarding the image as a central language. Experimental results show that m3P outperforms previous text-only baselines and multilingual multimodal methods by a large margin. Furthermore, the probing experiments validate the effectiveness of our method in enhancing translation under the low-resource and massively multilingual scenario.
2023
pdf
bib
abs
Adaptive Contrastive Knowledge Distillation for BERT Compression
Jinyang Guo
|
Jiaheng Liu
|
Zining Wang
|
Yuqing Ma
|
Ruihao Gong
|
Ke Xu
|
Xianglong Liu
Findings of the Association for Computational Linguistics: ACL 2023
In this paper, we propose a new knowledge distillation approach called adaptive contrastive knowledge distillation (ACKD) for BERT compression. Different from existing knowledge distillation methods for BERT that implicitly learn discriminative student features by mimicking the teacher features, we first introduce a novel contrastive distillation loss (CDL) based on hidden state features in BERT as the explicit supervision to learn discriminative student features. We further observe sentences with similar features may have completely different meanings, which makes them hard to distinguish. Existing methods do not pay sufficient attention to these hard samples with less discriminative features. Therefore, we propose a new strategy called sample adaptive reweighting (SAR) to adaptively pay more attention to these hard samples and strengthen their discrimination abilities. We incorporate our SAR strategy into our CDL and form the adaptive contrastive distillation loss, based on which we construct our ACKD framework. Comprehensive experiments on multiple natural language processing tasks demonstrate the effectiveness of our ACKD framework.
pdf
bib
abs
M2C: Towards Automatic Multimodal Manga Complement
Hongcheng Guo
|
Boyang Wang
|
Jiaqi Bai
|
Jiaheng Liu
|
Jian Yang
|
Zhoujun Li
Findings of the Association for Computational Linguistics: EMNLP 2023
Multimodal manga analysis focuses on enhancing manga understanding with visual and textual features, which has attracted considerable attention from both natural language processing and computer vision communities. Currently, most comics are hand-drawn and prone to problems such as missing pages, text contamination, and text aging, resulting in missing comic text content and seriously hindering human comprehension. In other words, the Multimodal Manga Complement (M2C) task has not been investigated, which aims to handle the aforementioned issues by providing a shared semantic space for vision and language understanding. To this end, we first propose the Multimodal Manga Complement task by establishing a new M2C benchmark dataset covering two languages. First, we design a manga argumentation method called MCoT to mine event knowledge in comics with large language models. Then, an effective baseline FVP-M2 using fine-grained visual prompts is proposed to support manga complement. Extensive experimental results show the effectiveness of FVP-M2 method for Multimodal Mange Complement.
2022
pdf
bib
abs
LVP-M3: Language-aware Visual Prompt for Multilingual Multimodal Machine Translation
Hongcheng Guo
|
Jiaheng Liu
|
Haoyang Huang
|
Jian Yang
|
Zhoujun Li
|
Dongdong Zhang
|
Zheng Cui
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Multimodal Machine Translation (MMT) focuses on enhancing text-only translation with visual features, which has attracted considerable attention from both natural language processing and computer vision communities. Recent advances still struggle to train a separate model for each language pair, which is costly and unaffordable when the number of languages increases in the real world. In other words, the multilingual multimodal machine translation (Multilingual MMT) task has not been investigated, which aims to handle the aforementioned issues by providing a shared semantic space for multiple languages. Besides, the image modality has no language boundaries, which is superior to bridging the semantic gap between languages. To this end,we first propose the Multilingual MMT task by establishing two new Multilingual MMT benchmark datasets covering seven languages.Then, an effective baseline LVP-M3 using visual prompts is proposed to support translations between different languages,which includes three stages (token encoding, language-aware visual prompt generation, and language translation). Extensive experimental results on our constructed benchmark datasets demonstrate the effectiveness of LVP-M3 method for Multilingual MMT.
pdf
bib
abs
Cross-Lingual Cross-Modal Consolidation for Effective Multilingual Video Corpus Moment Retrieval
Jiaheng Liu
|
Tan Yu
|
Hanyu Peng
|
Mingming Sun
|
Ping Li
Findings of the Association for Computational Linguistics: NAACL 2022
Existing multilingual video corpus moment retrieval (mVCMR) methods are mainly based on a two-stream structure. The visual stream utilizes the visual content in the video to estimate the query-visual similarity, and the subtitle stream exploits the query-subtitle similarity. The final query-video similarity ensembles similarities from two streams. In our work, we pro- pose a simple and effective strategy termed as Cross-lingual Cross-modal Consolidation (C3 ) to improve mVCMR accuracy. We adopt the ensemble similarity as the teacher to guide the training of each stream, leading to a more powerful ensemble similarity. Meanwhile, we use the teacher for a specific language to guide the student for another language to exploit the complementary knowledge across languages. Ex- tensive experiments on mTVR dataset demonstrate the effectiveness of our C3 method.