Jiahua Dong


2024

pdf bib
MM-LLMs: Recent Advances in MultiModal Large Language Models
Duzhen Zhang | Yahan Yu | Jiahua Dong | Chenxing Li | Dan Su | Chenhui Chu | Dong Yu
Findings of the Association for Computational Linguistics ACL 2024

In the past year, MultiModal Large Language Models (MM-LLMs) have undergone substantial advancements, augmenting off-the-shelf LLMs to support MM inputs or outputs via cost-effective training strategies. The resulting models not only preserve the inherent reasoning and decision-making capabilities of LLMs but also empower a diverse range of MM tasks. In this paper, we provide a comprehensive survey aimed at facilitating further research of MM-LLMs. Initially, we outline general design formulations for model architecture and training pipeline. Subsequently, we introduce a taxonomy encompassing 126 MM-LLMs, each characterized by its specific formulations. Furthermore, we review the performance of selected MM-LLMs on mainstream benchmarks and summarize key training recipes to enhance the potency of MM-LLMs. Finally, we explore promising directions for MM-LLMs while concurrently maintaining a [real-time tracking website](https://mm-llms.github.io/) for the latest developments in the field. We hope that this survey contributes to the ongoing advancement of the MM-LLMs domain.

2023

pdf bib
Continual Named Entity Recognition without Catastrophic Forgetting
Duzhen Zhang | Wei Cong | Jiahua Dong | Yahan Yu | Xiuyi Chen | Yonggang Zhang | Zhen Fang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Continual Named Entity Recognition (CNER) is a burgeoning area, which involves updating an existing model by incorporating new entity types sequentially. Nevertheless, continual learning approaches are often severely afflicted by catastrophic forgetting. This issue is intensified in CNER due to the consolidation of old entity types from previous steps into the non-entity type at each step, leading to what is known as the semantic shift problem of the non-entity type. In this paper, we introduce a pooled feature distillation loss that skillfully navigates the trade-off between retaining knowledge of old entity types and acquiring new ones, thereby more effectively mitigating the problem of catastrophic forgetting. Additionally, we develop a confidence-based pseudo-labeling for the non-entity type, i.e., predicting entity types using the old model to handle the semantic shift of the non-entity type. Following the pseudo-labeling process, we suggest an adaptive re-weighting type-balanced learning strategy to handle the issue of biased type distribution. We carried out comprehensive experiments on ten CNER settings using three different datasets. The results illustrate that our method significantly outperforms prior state-of-the-art approaches, registering an average improvement of 6.3% and 8.0% in Micro and Macro F1 scores, respectively.