*Warning: This paper contains several contents that may be toxic, harmful, or offensive.*In the last few years, text-to-image generative models have gained remarkable success in generating images with unprecedented quality accompanied by a breakthrough of inference speed. Despite their rapid progress, human biases that manifest in the training examples, particularly with regard to common stereotypical biases, like gender and skin tone, still have been found in these generative models. In this work, we seek to measure more complex human biases exist in the task of text-to-image generations. Inspired by the well-known Implicit Association Test (IAT) from social psychology, we propose a novel Text-to-Image Association Test (T2IAT) framework that quantifies the implicit stereotypes between concepts and valence, and those in the images. We replicate the previously documented bias tests on generative models, including morally neutral tests on flowers and insects as well as demographic stereotypical tests on diverse social attributes. The results of these experiments demonstrate the presence of complex stereotypical behaviors in image generations.
Pre-trained vision and language models such as CLIP have witnessed remarkable success in connecting images and texts with a primary focus on English texts. Despite recent efforts to extend CLIP to support other languages, disparities in performance among different languages have been observed due to uneven resource availability. Additionally, current cross-lingual transfer methods of those pre-trained models would consume excessive resources for a large number of languages. Therefore, we propose a new parameter-efficient cross-lingual transfer learning framework that utilizes a translation-based alignment method to mitigate multilingual disparities and explores parameter-efficient fine-tuning methods for parameter-efficient cross-lingual transfer. Extensive experiments on XTD and Multi30K datasets, covering 11 languages under zero-shot, few-shot, and full-dataset learning scenarios, show that our framework significantly reduces the multilingual disparities among languages and improves cross-lingual transfer results, especially in low-resource scenarios, while only keeping and fine-tuning an extremely small number of parameters compared to the full model (e.g., Our framework only requires 0.16% additional parameters of a full-model for each language in the few-shot learning scenario).
Recently pre-trained multimodal models, such as CLIP, have shown exceptional capabilities towards connecting images and natural language. The textual representations in English can be desirably transferred to multilingualism and support downstream multimodal tasks for different languages. Nevertheless, the principle of multilingual fairness is rarely scrutinized: do multilingual multimodal models treat languages equally? Are their performances biased towards particular languages? To answer these questions, we view language as the fairness recipient and introduce two new fairness notions, multilingual individual fairness and multilingual group fairness, for pre-trained multimodal models. Multilingual individual fairness requires that text snippets expressing similar semantics in different languages connect similarly to images, while multilingual group fairness requires equalized predictive performance across languages. We characterize the extent to which pre-trained multilingual vision-and-language representations are individually fair across languages. However, extensive experiments demonstrate that multilingual representations do not satisfy group fairness: (1) there is a severe multilingual accuracy disparity issue; (2) the errors exhibit biases across languages conditioning the group of people in the images, including race, gender and age.
Internet search affects people’s cognition of the world, so mitigating biases in search results and learning fair models is imperative for social good. We study a unique gender bias in image search in this work: the search images are often gender-imbalanced for gender-neutral natural language queries. We diagnose two typical image search models, the specialized model trained on in-domain datasets and the generalized representation model pre-trained on massive image and text data across the internet. Both models suffer from severe gender bias. Therefore, we introduce two novel debiasing approaches: an in-processing fair sampling method to address the gender imbalance issue for training models, and a post-processing feature clipping method base on mutual information to debias multimodal representations of pre-trained models. Extensive experiments on MS-COCO and Flickr30K benchmarks show that our methods significantly reduce the gender bias in image search models.