JiaMing Yang
2024
CharacterGLM: Customizing Social Characters with Large Language Models
Jinfeng Zhou
|
Zhuang Chen
|
Dazhen Wan
|
Bosi Wen
|
Yi Song
|
Jifan Yu
|
Yongkang Huang
|
Pei Ke
|
Guanqun Bi
|
Libiao Peng
|
JiaMing Yang
|
Xiyao Xiao
|
Sahand Sabour
|
Xiaohan Zhang
|
Wenjing Hou
|
Yijia Zhang
|
Yuxiao Dong
|
Hongning Wang
|
Jie Tang
|
Minlie Huang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track
Character-based dialogue (CharacterDial) has become essential in the industry (e.g., Character.AI), enabling users to freely customize social characters for social interactions. However, the generalizability and adaptability across various conversational scenarios inherent in customizing social characters still lack public industrial solutions. To address these challenges, by dissecting well-rounded social characters composed of both inherent social profiles and external social behaviors, we manually collect a large-scale Chinese corpus featuring characters with diverse categories and behaviors, and develop CharacterGLM models alongside well-designed refinement methods. Extensive experiments show that CharacterGLM outperforms most popular open- and closed-source LLMs and performs comparably to GPT-4. We will release our data and models for local development and deployment.
Search
Co-authors
- Jinfeng Zhou 1
- Zhuang Chen 1
- Dazhen Wan 1
- Bosi Wen 1
- Yi Song 1
- show all...