Jian-Guang Lou


2022

pdf bib
HiTab: A Hierarchical Table Dataset for Question Answering and Natural Language Generation
Zhoujun Cheng | Haoyu Dong | Zhiruo Wang | Ran Jia | Jiaqi Guo | Yan Gao | Shi Han | Jian-Guang Lou | Dongmei Zhang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Tables are often created with hierarchies, but existing works on table reasoning mainly focus on flat tables and neglect hierarchical tables. Hierarchical tables challenge numerical reasoning by complex hierarchical indexing, as well as implicit relationships of calculation and semantics. We present a new dataset, HiTab, to study question answering (QA) and natural language generation (NLG) over hierarchical tables. HiTab is a cross-domain dataset constructed from a wealth of statistical reports and Wikipedia pages, and has unique characteristics: (1) nearly all tables are hierarchical, and (2) QA pairs are not proposed by annotators from scratch, but are revised from real and meaningful sentences authored by analysts. (3) to reveal complex numerical reasoning in statistical reports, we provide fine-grained annotations of quantity and entity alignment. Experiments suggest that this HiTab presents a strong challenge for existing baselines and a valuable benchmark for future research. Targeting hierarchical structure, we devise a hierarchy-aware logical form for symbolic reasoning over tables, which shows high effectiveness. Targeting table reasoning, we leverage entity and quantity alignment to explore partially supervised training in QA and conditional generation in NLG, and largely reduce spurious predictions in QA and produce better descriptions in NLG.

pdf bib
Towards Robustness of Text-to-SQL Models Against Natural and Realistic Adversarial Table Perturbation
Xinyu Pi | Bing Wang | Yan Gao | Jiaqi Guo | Zhoujun Li | Jian-Guang Lou
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The robustness of Text-to-SQL parsers against adversarial perturbations plays a crucial role in delivering highly reliable applications. Previous studies along this line primarily focused on perturbations in the natural language question side, neglecting the variability of tables. Motivated by this, we propose the Adversarial Table Perturbation (ATP) as a new attacking paradigm to measure robustness of Text-to-SQL models. Following this proposition, we curate ADVETA, the first robustness evaluation benchmark featuring natural and realistic ATPs. All tested state-of-the-art models experience dramatic performance drops on ADVETA, revealing significant room of improvement. To defense against ATP, we build a systematic adversarial training example generation framework tailored for better contextualization of tabular data. Experiments show that our approach brings models best robustness improvement against ATP, while also substantially boost model robustness against NL-side perturbations. We will release ADVETA and code to facilitate future research.

pdf bib
GL-CLeF: A Global–Local Contrastive Learning Framework for Cross-lingual Spoken Language Understanding
Libo Qin | Qiguang Chen | Tianbao Xie | Qixin Li | Jian-Guang Lou | Wanxiang Che | Min-Yen Kan
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Due to high data demands of current methods, attention to zero-shot cross-lingual spoken language understanding (SLU) has grown, as such approaches greatly reduce human annotation effort. However, existing models solely rely on shared parameters, which can only perform implicit alignment across languages. We present Global-Local Contrastive Learning Framework (GL-CLeF) to address this shortcoming. Specifically, we employ contrastive learning, leveraging bilingual dictionaries to construct multilingual views of the same utterance, then encourage their representations to be more similar than negative example pairs, which achieves to explicitly align representations of similar sentences across languages. In addition, a key step in GL-CLeF is a proposed Local and Global component, which achieves a fine-grained cross-lingual transfer (i.e., sentence-level Local intent transfer, token-level Local slot transfer, and semantic-level Global transfer across intent and slot). Experiments on MultiATIS++ show that GL-CLeF achieves the best performance and successfully pulls representations of similar sentences across languages closer.

2021

pdf bib
Chase: A Large-Scale and Pragmatic Chinese Dataset for Cross-Database Context-Dependent Text-to-SQL
Jiaqi Guo | Ziliang Si | Yu Wang | Qian Liu | Ming Fan | Jian-Guang Lou | Zijiang Yang | Ting Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

The cross-database context-dependent Text-to-SQL (XDTS) problem has attracted considerable attention in recent years due to its wide range of potential applications. However, we identify two biases in existing datasets for XDTS: (1) a high proportion of context-independent questions and (2) a high proportion of easy SQL queries. These biases conceal the major challenges in XDTS to some extent. In this work, we present Chase, a large-scale and pragmatic Chinese dataset for XDTS. It consists of 5,459 coherent question sequences (17,940 questions with their SQL queries annotated) over 280 databases, in which only 35% of questions are context-independent, and 28% of SQL queries are easy. We experiment on Chase with three state-of-the-art XDTS approaches. The best approach only achieves an exact match accuracy of 40% over all questions and 16% over all question sequences, indicating that Chase highlights the challenging problems of XDTS. We believe that XDTS can provide fertile soil for addressing the problems.

pdf bib
ReTraCk: A Flexible and Efficient Framework for Knowledge Base Question Answering
Shuang Chen | Qian Liu | Zhiwei Yu | Chin-Yew Lin | Jian-Guang Lou | Feng Jiang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

We present Retriever-Transducer-Checker (ReTraCk), a neural semantic parsing framework for large scale knowledge base question answering (KBQA). ReTraCk is designed as a modular framework to maintain high flexibility. It includes a retriever to retrieve relevant KB items efficiently, a transducer to generate logical form with syntax correctness guarantees and a checker to improve transduction procedure. ReTraCk is ranked at top1 overall performance on the GrailQA leaderboard and obtains highly competitive performance on the typical WebQuestionsSP benchmark. Our system can interact with users timely, demonstrating the efficiency of the proposed framework.

pdf bib
Learning Algebraic Recombination for Compositional Generalization
Chenyao Liu | Shengnan An | Zeqi Lin | Qian Liu | Bei Chen | Jian-Guang Lou | Lijie Wen | Nanning Zheng | Dongmei Zhang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Awakening Latent Grounding from Pretrained Language Models for Semantic Parsing
Qian Liu | Dejian Yang | Jiahui Zhang | Jiaqi Guo | Bin Zhou | Jian-Guang Lou
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
TWT: Table with Written Text for Controlled Data-to-Text Generation
Tongliang Li | Lei Fang | Jian-Guang Lou | Zhoujun Li
Findings of the Association for Computational Linguistics: EMNLP 2021

Large pre-trained neural models have recently shown remarkable progress in text generation. In this paper, we propose to generate text conditioned on the structured data (table) and a prefix (the written text) by leveraging the pre-trained models. We present a new data-to-text dataset, Table with Written Text (TWT), by repurposing two existing datasets: ToTTo and TabFact. TWT contains both factual and logical statements that are faithful to the structured data, aiming to serve as a useful benchmark for controlled text generation. Compared with existing data-to-text task settings, TWT is more intuitive, the prefix (usually provided by the user) controls the topic of the generated text. Existing methods usually output hallucinated text that is not faithful on TWT. Therefore, we design a novel approach with table-aware attention visibility and copy mechanism over the table. Experimental results show that our approach outperforms state-of-the-art methods under both automatic and human evaluation metrics.

pdf bib
Weakly Supervised Semantic Parsing by Learning from Mistakes
Jiaqi Guo | Jian-Guang Lou | Ting Liu | Dongmei Zhang
Findings of the Association for Computational Linguistics: EMNLP 2021

Weakly supervised semantic parsing (WSP) aims at training a parser via utterance-denotation pairs. This task is challenging because it requires (1) searching consistent logical forms in a huge space; and (2) dealing with spurious logical forms. In this work, we propose Learning from Mistakes (LFM), a simple yet effective learning framework for WSP. LFM utilizes the mistakes made by a parser during searching, i.e., generating logical forms that do not execute to correct denotations, for tackling the two challenges. In a nutshell, LFM additionally trains a parser using utterance-logical form pairs created from mistakes, which can quickly bootstrap the parser to search consistent logical forms. Also, it can motivate the parser to learn the correct mapping between utterances and logical forms, thus dealing with the spuriousness of logical forms. We evaluate LFM on WikiTableQuestions, WikiSQL, and TabFact in the WSP setting. The parser trained with LFM outperforms the previous state-of-the-art semantic parsing approaches on the three datasets. Also, we find that LFM can substantially reduce the need for labeled data. Using only 10% of utterance-denotation pairs, the parser achieves 84.2 denotation accuracy on WikiSQL, which is competitive with the previous state-of-the-art approaches using 100% labeled data.

pdf bib
Translating Headers of Tabular Data: A Pilot Study of Schema Translation
Kunrui Zhu | Yan Gao | Jiaqi Guo | Jian-Guang Lou
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Schema translation is the task of automatically translating headers of tabular data from one language to another. High-quality schema translation plays an important role in cross-lingual table searching, understanding and analysis. Despite its importance, schema translation is not well studied in the community, and state-of-the-art neural machine translation models cannot work well on this task because of two intrinsic differences between plain text and tabular data: morphological difference and context difference. To facilitate the research study, we construct the first parallel dataset for schema translation, which consists of 3,158 tables with 11,979 headers written in 6 different languages, including English, Chinese, French, German, Spanish, and Japanese. Also, we propose the first schema translation model called CAST, which is a header-to-header neural machine translation model augmented with schema context. Specifically, we model a target header and its context as a directed graph to represent their entity types and relations. Then CAST encodes the graph with a relational-aware transformer and uses another transformer to decode the header in the target language. Experiments on our dataset demonstrate that CAST significantly outperforms state-of-the-art neural machine translation models. Our dataset will be released at https://github.com/microsoft/ContextualSP.

2020

pdf bib
Benchmarking Meaning Representations in Neural Semantic Parsing
Jiaqi Guo | Qian Liu | Jian-Guang Lou | Zhenwen Li | Xueqing Liu | Tao Xie | Ting Liu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Meaning representation is an important component of semantic parsing. Although researchers have designed a lot of meaning representations, recent work focuses on only a few of them. Thus, the impact of meaning representation on semantic parsing is less understood. Furthermore, existing work’s performance is often not comprehensively evaluated due to the lack of readily-available execution engines. Upon identifying these gaps, we propose , a new unified benchmark on meaning representations, by integrating existing semantic parsing datasets, completing the missing logical forms, and implementing the missing execution engines. The resulting unified benchmark contains the complete enumeration of logical forms and execution engines over three datasets × four meaning representations. A thorough experimental study on Unimer reveals that neural semantic parsing approaches exhibit notably different performance when they are trained to generate different meaning representations. Also, program alias and grammar rules heavily impact the performance of different meaning representations. Our benchmark, execution engines and implementation can be found on: https://github.com/JasperGuo/Unimer.

pdf bib
Incomplete Utterance Rewriting as Semantic Segmentation
Qian Liu | Bei Chen | Jian-Guang Lou | Bin Zhou | Dongmei Zhang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Recent years the task of incomplete utterance rewriting has raised a large attention. Previous works usually shape it as a machine translation task and employ sequence to sequence based architecture with copy mechanism. In this paper, we present a novel and extensive approach, which formulates it as a semantic segmentation task. Instead of generating from scratch, such a formulation introduces edit operations and shapes the problem as prediction of a word-level edit matrix. Benefiting from being able to capture both local and global information, our approach achieves state-of-the-art performance on several public datasets. Furthermore, our approach is four times faster than the standard approach in inference.

pdf bib
“What Do You Mean by That?” A Parser-Independent Interactive Approach for Enhancing Text-to-SQL
Yuntao Li | Bei Chen | Qian Liu | Yan Gao | Jian-Guang Lou | Yan Zhang | Dongmei Zhang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In Natural Language Interfaces to Databases systems, the text-to-SQL technique allows users to query databases by using natural language questions. Though significant progress in this area has been made recently, most parsers may fall short when they are deployed in real systems. One main reason stems from the difficulty of fully understanding the users’ natural language questions. In this paper, we include human in the loop and present a novel parser-independent interactive approach (PIIA) that interacts with users using multi-choice questions and can easily work with arbitrary parsers. Experiments were conducted on two cross-domain datasets, the WikiSQL and the more complex Spider, with five state-of-the-art parsers. These demonstrated that PIIA is capable of enhancing the text-to-SQL performance with limited interaction turns by using both simulation and human evaluation.

pdf bib
You Impress Me: Dialogue Generation via Mutual Persona Perception
Qian Liu | Yihong Chen | Bei Chen | Jian-Guang Lou | Zixuan Chen | Bin Zhou | Dongmei Zhang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Despite the continuing efforts to improve the engagingness and consistency of chit-chat dialogue systems, the majority of current work simply focus on mimicking human-like responses, leaving understudied the aspects of modeling understanding between interlocutors. The research in cognitive science, instead, suggests that understanding is an essential signal for a high-quality chit-chat conversation. Motivated by this, we propose Pˆ2 Bot, a transmitter-receiver based framework with the aim of explicitly modeling understanding. Specifically, Pˆ2 Bot incorporates mutual persona perception to enhance the quality of personalized dialogue generation. Experiments on a large public dataset, Persona-Chat, demonstrate the effectiveness of our approach, with a considerable boost over the state-of-the-art baselines across both automatic metrics and human evaluations.

pdf bib
Single-/Multi-Source Cross-Lingual NER via Teacher-Student Learning on Unlabeled Data in Target Language
Qianhui Wu | Zijia Lin | Börje Karlsson | Jian-Guang Lou | Biqing Huang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

To better tackle the named entity recognition (NER) problem on languages with little/no labeled data, cross-lingual NER must effectively leverage knowledge learned from source languages with rich labeled data. Previous works on cross-lingual NER are mostly based on label projection with pairwise texts or direct model transfer. However, such methods either are not applicable if the labeled data in the source languages is unavailable, or do not leverage information contained in unlabeled data in the target language. In this paper, we propose a teacher-student learning method to address such limitations, where NER models in the source languages are used as teachers to train a student model on unlabeled data in the target language. The proposed method works for both single-source and multi-source cross-lingual NER. For the latter, we further propose a similarity measuring method to better weight the supervision from different teacher models. Extensive experiments for 3 target languages on benchmark datasets well demonstrate that our method outperforms existing state-of-the-art methods for both single-source and multi-source cross-lingual NER.

2019

pdf bib
Leveraging Adjective-Noun Phrasing Knowledge for Comparison Relation Prediction in Text-to-SQL
Haoyan Liu | Lei Fang | Qian Liu | Bei Chen | Jian-Guang Lou | Zhoujun Li
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

One key component in text-to-SQL is to predict the comparison relations between columns and their values. To the best of our knowledge, no existing models explicitly introduce external common knowledge to address this problem, thus their capabilities of predicting comparison relations are limited beyond training data. In this paper, we propose to leverage adjective-noun phrasing knowledge mined from the web to predict the comparison relations in text-to-SQL. Experimental results on both the original and the re-split Spider dataset show that our approach achieves significant improvement over state-of-the-art methods on comparison relation prediction.

pdf bib
A Split-and-Recombine Approach for Follow-up Query Analysis
Qian Liu | Bei Chen | Haoyan Liu | Jian-Guang Lou | Lei Fang | Bin Zhou | Dongmei Zhang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Context-dependent semantic parsing has proven to be an important yet challenging task. To leverage the advances in context-independent semantic parsing, we propose to perform follow-up query analysis, aiming to restate context-dependent natural language queries with contextual information. To accomplish the task, we propose STAR, a novel approach with a well-designed two-phase process. It is parser-independent and able to handle multifarious follow-up scenarios in different domains. Experiments on the FollowUp dataset show that STAR outperforms the state-of-the-art baseline by a large margin of nearly 8%. The superiority on parsing results verifies the feasibility of follow-up query analysis. We also explore the extensibility of STAR on the SQA dataset, which is very promising.

pdf bib
Data-Anonymous Encoding for Text-to-SQL Generation
Zhen Dong | Shizhao Sun | Hongzhi Liu | Jian-Guang Lou | Dongmei Zhang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

On text-to-SQL generation, the input utterance usually contains lots of tokens that are related to column names or cells in the table, called table-related tokens. These table-related tokens are troublesome for the downstream neural semantic parser because it brings complex semantics and hinders the sharing across the training examples. However, existing approaches either ignore handling these tokens before the semantic parser or simply use deterministic approaches based on string-match or word embedding similarity. In this work, we propose a more efficient approach to handle table-related tokens before the semantic parser. First, we formulate it as a sequential tagging problem and propose a two-stage anonymization model to learn the semantic relationship between tables and input utterances. Then, we leverage the implicit supervision from SQL queries by policy gradient to guide the training. Experiments demonstrate that our approach consistently improves performances of different neural semantic parsers and significantly outperforms deterministic approaches.

pdf bib
Towards Complex Text-to-SQL in Cross-Domain Database with Intermediate Representation
Jiaqi Guo | Zecheng Zhan | Yan Gao | Yan Xiao | Jian-Guang Lou | Ting Liu | Dongmei Zhang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We present a neural approach called IRNet for complex and cross-domain Text-to-SQL. IRNet aims to address two challenges: 1) the mismatch between intents expressed in natural language (NL) and the implementation details in SQL; 2) the challenge in predicting columns caused by the large number of out-of-domain words. Instead of end-to-end synthesizing a SQL query, IRNet decomposes the synthesis process into three phases. In the first phase, IRNet performs a schema linking over a question and a database schema. Then, IRNet adopts a grammar-based neural model to synthesize a SemQL query which is an intermediate representation that we design to bridge NL and SQL. Finally, IRNet deterministically infers a SQL query from the synthesized SemQL query with domain knowledge. On the challenging Text-to-SQL benchmark Spider, IRNet achieves 46.7% accuracy, obtaining 19.5% absolute improvement over previous state-of-the-art approaches. At the time of writing, IRNet achieves the first position on the Spider leaderboard.

2018

pdf bib
SemRegex: A Semantics-Based Approach for Generating Regular Expressions from Natural Language Specifications
Zexuan Zhong | Jiaqi Guo | Wei Yang | Jian Peng | Tao Xie | Jian-Guang Lou | Ting Liu | Dongmei Zhang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Recent research proposes syntax-based approaches to address the problem of generating programs from natural language specifications. These approaches typically train a sequence-to-sequence learning model using a syntax-based objective: maximum likelihood estimation (MLE). Such syntax-based approaches do not effectively address the goal of generating semantically correct programs, because these approaches fail to handle Program Aliasing, i.e., semantically equivalent programs may have many syntactically different forms. To address this issue, in this paper, we propose a semantics-based approach named SemRegex. SemRegex provides solutions for a subtask of the program-synthesis problem: generating regular expressions from natural language. Different from the existing syntax-based approaches, SemRegex trains the model by maximizing the expected semantic correctness of the generated regular expressions. The semantic correctness is measured using the DFA-equivalence oracle, random test cases, and distinguishing test cases. The experiments on three public datasets demonstrate the superiority of SemRegex over the existing state-of-the-art approaches.