Jian Jiao


2022

pdf bib
CULG: Commercial Universal Language Generation
Haonan Li | Yameng Huang | Yeyun Gong | Jian Jiao | Ruofei Zhang | Timothy Baldwin | Nan Duan
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track

Pre-trained language models (PLMs) have dramatically improved performance for many natural language processing (NLP) tasks in domains such as finance and healthcare. However, the application of PLMs in the domain of commerce, especially marketing and advertising, remains less studied. In this work, we adapt pre-training methods to the domain of commerce, by proposing CULG, a large-scale commercial universal language generation model which is pre-trained on a corpus drawn from 10 markets across 7 languages. We propose 4 commercial generation tasks and a two-stage training strategy for pre-training, and demonstrate that the proposed strategy yields performance improvements on three generation tasks as compared to single-stage pre-training. Extensive experiments show that our model outperforms other models by a large margin on commercial generation tasks, and we conclude with a discussion on additional applications over other markets, languages, and tasks.

2021

pdf bib
Mask Attention Networks: Rethinking and Strengthen Transformer
Zhihao Fan | Yeyun Gong | Dayiheng Liu | Zhongyu Wei | Siyuan Wang | Jian Jiao | Nan Duan | Ruofei Zhang | Xuanjing Huang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Transformer is an attention-based neural network, which consists of two sublayers, namely, Self-Attention Network (SAN) and Feed-Forward Network (FFN). Existing research explores to enhance the two sublayers separately to improve the capability of Transformer for text representation. In this paper, we present a novel understanding of SAN and FFN as Mask Attention Networks (MANs) and show that they are two special cases of MANs with static mask matrices. However, their static mask matrices limit the capability for localness modeling in text representation learning. We therefore introduce a new layer named dynamic mask attention network (DMAN) with a learnable mask matrix which is able to model localness adaptively. To incorporate advantages of DMAN, SAN, and FFN, we propose a sequential layered structure to combine the three types of layers. Extensive experiments on various tasks, including neural machine translation and text summarization demonstrate that our model outperforms the original Transformer.

pdf bib
HittER: Hierarchical Transformers for Knowledge Graph Embeddings
Sanxing Chen | Xiaodong Liu | Jianfeng Gao | Jian Jiao | Ruofei Zhang | Yangfeng Ji
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

This paper examines the challenging problem of learning representations of entities and relations in a complex multi-relational knowledge graph. We propose HittER, a Hierarchical Transformer model to jointly learn Entity-relation composition and Relational contextualization based on a source entity’s neighborhood. Our proposed model consists of two different Transformer blocks: the bottom block extracts features of each entity-relation pair in the local neighborhood of the source entity and the top block aggregates the relational information from outputs of the bottom block. We further design a masked entity prediction task to balance information from the relational context and the source entity itself. Experimental results show that HittER achieves new state-of-the-art results on multiple link prediction datasets. We additionally propose a simple approach to integrate HittER into BERT and demonstrate its effectiveness on two Freebase factoid question answering datasets.

pdf bib
GLGE: A New General Language Generation Evaluation Benchmark
Dayiheng Liu | Yu Yan | Yeyun Gong | Weizhen Qi | Hang Zhang | Jian Jiao | Weizhu Chen | Jie Fu | Linjun Shou | Ming Gong | Pengcheng Wang | Jiusheng Chen | Daxin Jiang | Jiancheng Lv | Ruofei Zhang | Winnie Wu | Ming Zhou | Nan Duan
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
KFCNet: Knowledge Filtering and Contrastive Learning for Generative Commonsense Reasoning
Haonan Li | Yeyun Gong | Jian Jiao | Ruofei Zhang | Timothy Baldwin | Nan Duan
Findings of the Association for Computational Linguistics: EMNLP 2021

Pre-trained language models have led to substantial gains over a broad range of natural language processing (NLP) tasks, but have been shown to have limitations for natural language generation tasks with high-quality requirements on the output, such as commonsense generation and ad keyword generation. In this work, we present a novel Knowledge Filtering and Contrastive learning Network (KFCNet) which references external knowledge and achieves better generation performance. Specifically, we propose a BERT-based filter model to remove low-quality candidates, and apply contrastive learning separately to each of the encoder and decoder, within a general encoder–decoder architecture. The encoder contrastive module helps to capture global target semantics during encoding, and the decoder contrastive module enhances the utility of retrieved prototypes while learning general features. Extensive experiments on the CommonGen benchmark show that our model outperforms the previous state of the art by a large margin: +6.6 points (42.5 vs. 35.9) for BLEU-4, +3.7 points (33.3 vs. 29.6) for SPICE, and +1.3 points (18.3 vs. 17.0) for CIDEr. We further verify the effectiveness of the proposed contrastive module on ad keyword generation, and show that our model has potential commercial value.

2020

pdf bib
An Enhanced Knowledge Injection Model for Commonsense Generation
Zhihao Fan | Yeyun Gong | Zhongyu Wei | Siyuan Wang | Yameng Huang | Jian Jiao | Xuanjing Huang | Nan Duan | Ruofei Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Commonsense generation aims at generating plausible everyday scenario description based on a set of provided concepts. Digging the relationship of concepts from scratch is non-trivial, therefore, we retrieve prototypes from external knowledge to assist the understanding of the scenario for better description generation. We integrate two additional modules into the pretrained encoder-decoder model for prototype modeling to enhance the knowledge injection procedure. We conduct experiment on CommonGen benchmark, experimental results show that our method significantly improves the performance on all the metrics.