Jian Liao


2022

pdf bib
基于异构用户知识融合的隐式情感分析研究(Research on Implicit Sentiment Analysis based on Heterogeneous User Knowledge Fusion)
Jian Liao (廖健) | Kai Zhang (张楷) | Suge Wang (王素格) | Jia Lei (雷佳) | Yiyang Zhang (张益阳)
Proceedings of the 21st Chinese National Conference on Computational Linguistics

“隐式情感分析因其缺乏显式情感线索的特性是情感分析领域的重要研究难点之一。传统的隐式情感分析方法通常针对隐式情感文本本身的信息进行建模,没有考虑隐式情感的主观差异性特征。本文提出了一种基于异构用户知识融合的隐式情感分析模型HELENE,首先从用户数据中挖掘用户异构的内容知识、社会化属性知识以及社会化关系知识,异构用户知识融合学习框架基于图神经网络模型结合动态预训练模型分别从用户的内部信息和外部信息两个维度对其进行画像建模;在此基础上与隐式情感文本语义信息进行融合学习,使得模型可以对隐式情感进行主观差异化建模表示。此外,本文构建了一个用户个性化通用情感分析语料库,涵盖了较为完整的文本内容信息、用户社会化属性信息和关系信息,可同时满足面向用户个性化建模的隐式或显式情感分析相关研究任务的需要。在所构建数据集上的实验结果显示,本文的方法相比基线模型在用户个性化隐式情感分析任务上具有显著的提升效果。”

2021

pdf bib
Emotion Inference in Multi-Turn Conversations with Addressee-Aware Module and Ensemble Strategy
Dayu Li | Xiaodan Zhu | Yang Li | Suge Wang | Deyu Li | Jian Liao | Jianxing Zheng
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Emotion inference in multi-turn conversations aims to predict the participant’s emotion in the next upcoming turn without knowing the participant’s response yet, and is a necessary step for applications such as dialogue planning. However, it is a severe challenge to perceive and reason about the future feelings of participants, due to the lack of utterance information from the future. Moreover, it is crucial for emotion inference to capture the characteristics of emotional propagation in conversations, such as persistence and contagiousness. In this study, we focus on investigating the task of emotion inference in multi-turn conversations by modeling the propagation of emotional states among participants in the conversation history, and propose an addressee-aware module to automatically learn whether the participant keeps the historical emotional state or is affected by others in the next upcoming turn. In addition, we propose an ensemble strategy to further enhance the model performance. Empirical studies on three different benchmark conversation datasets demonstrate the effectiveness of the proposed model over several strong baselines.

2020

pdf bib
Public Sentiment Drift Analysis Based on Hierarchical Variational Auto-encoder
Wenyue Zhang | Xiaoli Li | Yang Li | Suge Wang | Deyu Li | Jian Liao | Jianxing Zheng
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Detecting public sentiment drift is a challenging task due to sentiment change over time. Existing methods first build a classification model using historical data and subsequently detect drift if the model performs much worse on new data. In this paper, we focus on distribution learning by proposing a novel Hierarchical Variational Auto-Encoder (HVAE) model to learn better distribution representation, and design a new drift measure to directly evaluate distribution changes between historical data and new data.Our experimental results demonstrate that our proposed model achieves better results than three existing state-of-the-art methods.