In this paper, we study how open-source large language models (LLMs) can be effectively deployed for improving query rewriting in conversational search, especially for ambiguous queries. We introduce CHIQ, a two-step method that leverages the capabilities of LLMs to resolve ambiguities in the conversation history before query rewriting. This approach contrasts with prior studies that predominantly use closed-source LLMs to directly generate search queries from conversation history. We demonstrate on five well-established benchmarks that CHIQ leads to state-of-the-art results across most settings, showing highly competitive performances with systems leveraging closed-source LLMs. Our study provides a first step towards leveraging open-source LLMs in conversational search, as a competitive alternative to the prevailing reliance on commercial LLMs. Data, models, and source code will be publicly available upon acceptance at https://github.com/fengranMark/CHIQ.
Large language models (LLMs) are essential tools that users employ across various scenarios, so evaluating their performance and guiding users in selecting the suitable service is important. Although many benchmarks exist, they mainly focus on specific predefined model abilities, such as world knowledge, reasoning, etc. Based on these ability scores, it is hard for users to determine which LLM best suits their particular needs. To address these issues, we propose to evaluate LLMs from a user-centric perspective and design this benchmark to measure their efficacy in satisfying user needs under distinct intents. Firstly, we collect 1,846 real-world use cases from a user study with 712 participants from 23 countries. This first-hand data helps us understand actual user intents and needs in LLM interactions, forming the User Reported Scenarios (URS) dataset, which is categorized with six types of user intents. Secondly, based on this authentic dataset, we benchmark 10 LLM services with GPT-4-as-Judge. Thirdly, we show that benchmark scores align well with human preference in both real-world experience and pair-wise annotations, achieving Pearson correlations of 0.95 and 0.94, respectively. This alignment confirms that the URS dataset and our evaluation method establish an effective user-centric benchmark. The dataset, code, and process data are publicly available at https://github.com/Alice1998/URS.
Conversational search facilitates complex information retrieval by enabling multi-turn interactions between users and the system. Supporting such interactions requires a comprehensive understanding of the conversational inputs to formulate a good search query based on historical information. In particular, the search query should include the relevant information from the previous conversation turns.However, current approaches for conversational dense retrieval primarily rely on fine-tuning a pre-trained ad-hoc retriever using the whole conversational search session, which can be lengthy and noisy. Moreover, existing approaches are limited by the amount of manual supervision signals in the existing datasets.To address the aforementioned issues, we propose a **H**istory-**A**ware **Conv**ersational **D**ense **R**etrieval (HAConvDR) system, which incorporates two ideas: context-denoised query reformulation and automatic mining of supervision signals based on the actual impact of historical turns.Experiments on two public conversational search datasets demonstrate the improved history modeling capability of HAConvDR, in particular for long conversations with topic shifts.
Large Language Models (LLMs) are foundational in language technologies, particularly in information retrieval (IR). In this paper, we thoroughly explore the best practice of leveraging LLMs for query expansion. To this end, we introduce a training-free, straightforward yet effective framework called Multi-Text Generation Integration (MuGI). This approach leverages LLMs to generate multiple pseudo-references, which are then integrated with the original queries to enhance both sparse and dense retrieval methods. Additionally, we introduce a retrieval pipeline based on MuGI, which combines the strengths of sparse and dense retrievers to achieve superior performance without the need for costly pre-indexing. Our empirical findings reveal that: (1) Increasing the number of samples from LLMs benefits IR systems; (2) A balance between the query and pseudo-documents, and an effective integration strategy, is critical for high performance; (3) Contextual information from LLMs is essential, even boost a 23M model to outperform a 7B baseline model; (4) Pseudo relevance feedback can further calibrate queries for improved performance; and (5) Query expansion is widely applicable and versatile, consistently enhancing models ranging from 23M to 7B parameters. Our code and all generated references are made available at https://github.com/lezhang7/Retrieval_MuGI.
LLMs confront inherent limitations in terms of its knowledge, memory, and action. The retrieval augmentation stands as a vital mechanism to address these limitations, which brings in useful information from external sources to augment the LLM. However, existing retrieval methods encounter two pressing issues. On one hand, the general retrievers are not properly optimized for retrieval augmentation hence exhibit limited effectiveness; on the other hand, the task-specific retrievers excel in the targeted retrieval augmentation scenario, while lack the versatility to handle diverse scenarios. In this work, we propose LLM-Embedder for the unified support of diverse retrieval augmentation scenarios. Our method presents three technical contributions. Firstly, we introduce a new reward formulation, namely rank-aware reward. It exploits the ranking position of the desired output among N sampled outputs from the LLM, which leads to fine-grained and robust computation of reward from the LLM’s feedback. Secondly, we design a novel distillation objective, called graded distillation. It incorporates both the absolute value and the relative order of the reward for more sufficient utilization of the LLM’s feedback. Thirdly, we systematically optimize the multi-task learning, which effectively unifies the multiple retrieval functionalities into one model. In our experiment, LLM-Embedder substantially improves the LLM’s performances in various downstream tasks, while introducing superior retrieval augmentation’s effect over both general and task-specifc retrievers. Our data, code, and model have been released at https://github.com/FlagOpen/FlagEmbedding.
In the era of large language models (LLMs), hallucination (the tendency to generate factually incorrect content) poses great challenges to trustworthy and reliable deployment of LLMs in real-world applications. To tackle the hallucination, three key questions should be well studied: how to detect hallucinations (detection), why do LLMs hallucinate (source), and what can be done to mitigate them (mitigation). To address these challenges, this work presents a systematic empirical study on LLM hallucinations, focused on the three aspects of hallucination detection, source and mitigation. Specially, we construct a new hallucination benchmark HaluEval 2.0, and design a simple yet effective detection method for LLM hallucinations. Furthermore, we zoom into the different training or utilization stages of LLMs and extensively analyze the potential factors that lead to the LLM hallucinations. Finally, we implement and examine a series of widely used techniques to mitigate the hallucinations in LLMs. Our work has led to several important findings to understand the hallucination origin and mitigate the hallucinations in LLMs.
In conversational search, the user’s real search intent for the current conversation turn is dependent on the previous conversation history. It is challenging to determine a good search query from the whole conversation context. To avoid the expensive re-training of the query encoder, most existing methods try to learn a rewriting model to de-contextualize the current query by mimicking the manual query rewriting. However, manually rewritten queries are not always the best search queries. Thus, training a rewriting model on them would lead to sub-optimal queries. Another useful information to enhance the search query is the potential answer to the question. In this paper, we propose ConvGQR, a new framework to reformulate conversational queries based on generative pre-trained language models (PLMs), one for query rewriting and another for generating potential answers. By combining both, ConvGQR can produce better search queries. In addition, to relate query reformulation to the retrieval task, we propose a knowledge infusion mechanism to optimize both query reformulation and retrieval. Extensive experiments on four conversational search datasets demonstrate the effectiveness of ConvGQR.
Pretrained language models (PLMs) encode a large amount of world knowledge. However, as such knowledge is frozen at the time of model training, the models become static and limited by the training data at that time. In order to further improve the capacity of PLMs for knowledge-intensive tasks, we consider augmenting PLMs with the large-scale web using search engine. Unlike previous augmentation sources (e.g., Wikipedia data dump), the web provides broader, more comprehensive and constantly updated information. In this paper, we present a web-augmented PLM – UniWeb, which is trained over 16 knowledge-intensive tasks in a unified text-to-text format. Instead of simply using the retrieved contents from web, our approach has made two major improvements. Firstly, we propose an adaptive search engine assisted learning method that can self-evaluate the confidence level of PLM’s predictions, and adaptively determine when to refer to the web for more data, which can avoid useless or noisy augmentation from web. Secondly, we design a pretraining task, i.e., continual knowledge learning, based on salient spans prediction, to reduce the discrepancy between the encoded and retrieved knowledge. Experiments on a wide range of knowledge-intensive tasks show that our model significantly outperforms previous retrieval-augmented methods.
As privacy issues are receiving increasing attention within the Natural Language Processing (NLP) community, numerous methods have been proposed to sanitize texts subject to differential privacy. However, the state-of-the-art text sanitization mechanisms based on a relaxed notion of metric local differential privacy (MLDP) do not apply to non-metric semantic similarity measures and cannot achieve good privacy-utility trade-offs. To address these limitations, we propose a novel Customized Text sanitization (CusText) mechanism based on the original 𝜖-differential privacy (DP) definition, which is compatible with any similarity measure.Moreover, CusText assigns each input token a customized output set to provide more advanced privacy protection at the token level.Extensive experiments on several benchmark datasets show that CusText achieves a better trade-off between privacy and utility than existing mechanisms.The code is available at https://github.com/sai4july/CusText.
Multi-modal open-domain question answering typically requires evidence retrieval from databases across diverse modalities, such as images, tables, passages, etc. Even Large Language Models (LLMs) like GPT-4 fall short in this task. To enable LLMs to tackle the task in a zero-shot manner, we introduce MoqaGPT, a straightforward and flexible framework. Using a divide-and-conquer strategy that bypasses intricate multi-modality ranking, our framework can accommodate new modalities and seamlessly transition to new models for the task. Built upon LLMs, MoqaGPT retrieves and extracts answers from each modality separately, then fuses this multi-modal information using LLMs to produce a final answer. Our methodology boosts performance on the MMCoQA dataset, improving F1 by +37.91 points and EM by +34.07 points over the supervised baseline. On the MultiModalQA dataset, MoqaGPT surpasses the zero-shot baseline, improving F1 by 9.5 points and EM by 10.1 points, and significantly closes the gap with supervised methods. Our codebase is available at https://github.com/lezhang7/MOQAGPT.
Large language models (LLMs), such as ChatGPT, are prone to generate hallucinations, i.e., content that conflicts with the source or cannot be verified by the factual knowledge. To understand what types of content and to which extent LLMs are apt to hallucinate, we introduce the Hallucination Evaluation for Large Language Models (HaluEval) benchmark, a large collection of generated and human-annotated hallucinated samples for evaluating the performance of LLMs in recognizing hallucination. To generate these samples, we propose a ChatGPT-based two-step framework, i.e., sampling-then-filtering. Besides, we also hire some human labelers to annotate the hallucinations in ChatGPT responses. The empirical results suggest that ChatGPT is likely to generate hallucinated content in specific topics by fabricating unverifiable information (i.e., about 19.5% user queries). Moreover, existing LLMs face great challenges in recognizing the hallucinations in texts. While, our experiments also prove that the hallucination recognition can be improved by providing external knowledge or adding reasoning steps.
Une des particularités des systèmes de recherche conversationnelle est qu’ils impliquent des initiatives mixtes telles que des questions de clarification des requêtes générées par le système pour mieux comprendre le besoin utilisateur. L’évaluation de ces systèmes à grande échelle sur la tâche finale de RI est très difficile et nécessite des ensembles de données adéquats contenant de telles interactions. Cependant, les jeux de données actuels se concentrent uniquement sur les tâches traditionnelles de RI ad hoc ou sur les tâches de clarification de la requête. Pour combler cette lacune, nous proposons une méthodologie pour construire automatiquement des ensembles de données de RI conversationnelle à grande échelle à partir d’ensembles de données de RI ad hoc afin de faciliter les explorations sur la RI conversationnelle. Nous effectuons une évaluation approfondie montrant la qualité et la pertinence des interactions générées pour chaque requête initiale. Cet article montre la faisabilité et l’utilité de l’augmentation des ensembles de données de RI ad-hoc pour la RI conversationnelle.
La recherche conversationnelle est une tâche qui vise à retrouver des documents à partir de la questioncourante de l’utilisateur ainsi que l’historique complet de la conversation. La plupart des méthodesantérieures sont basées sur une approche multi-étapes reposant sur une reformulation de la question.Cette étape de reformulation est critique, car elle peut conduire à un classement sous-optimal des do-cuments. D’autres approches ont essayé d’ordonner directement les documents, mais s’appuient pourla plupart sur un jeu de données contenant des pseudo-labels. Dans ce travail, nous proposons une tech-nique d’apprentissage à la fois “légère” et innovante pour un modèle contextualisé d’ordonnancementbasé sur SPLADE. En s’appuyant sur les représentations parcimonieuses de SPLADE, nous montronsque notre modèle, lorsqu’il est combiné avec le modèle de ré-ordonnancement T5Mono, obtient desrésultats qui sont compétitifs avec ceux obtenus par les participants des campagnes d’évaluation TRECCAsT 2020 et 2021. Le code source est disponible sur https://github.com/anonymous.
Le projet ANR JCJC SESAMS s’intéresse depuis 2018 au paradigme désormais actuels des systèmes de recherche d’information conversationnels. L’objectif est de formaliser des modèles de recherche d’information capables de fluidifier les interactions avec les utilisateurs pendant une session de recherche. Nous abordons différents enjeux : la prise en compte d’une conversation en langage naturel en contexte d’une recherche d’information, la génération d’interactions permettant de clarifier les besoins en information, la génération de réponse en langage naturel, ainsi que l’apprentissage continu pour s’adapter aux nouveaux besoins des utilisateurs. Nous présenterons dans ce poster ces différents enjeux et les contributions associées. Nous pourrons également discuter les perspectives de recherche dans ce domaine suite au développement récents des gros modèles de langue.
Pretrained language models (PLMs) have made remarkable progress in text generation tasks via fine-tuning. While, it is challenging to fine-tune PLMs in a data-scarce situation. Therefore, it is non-trivial to develop a general and lightweight model that can adapt to various text generation tasks based on PLMs. To fulfill this purpose, the recent prompt-based learning offers a potential solution. In this paper, we improve this technique and propose a novel prompt-based method (PTG) for text generation in a transferable setting. First, PTG learns a set of source prompts for various source generation tasks and then transfers these prompts as target prompts to perform target generation tasks. To consider both task- and instance-level information, we design an adaptive attention mechanism to derive the target prompts. For each data instance, PTG learns a specific target prompt by attending to highly relevant source prompts. In extensive experiments, PTG yields competitive or better results than fine-tuning methods. We release our source prompts as an open resource, where users can add or reuse them to improve new text generation tasks for future research. Code and data can be available at https://github.com/RUCAIBox/Transfer-Prompts-for-Text-Generation.
We study the text generation task under the approach of pre-trained language models (PLMs). Typically, an auto-regressive (AR) method is adopted for generating texts in a token-by-token manner. Despite many advantages of AR generation, it usually suffers from inefficient inference. Therefore, non-autoregressive (NAR) models are proposed to generate all target tokens simultaneously. However, NAR models usually generate texts of lower quality due to the absence of token dependency in the output text. In this paper, we propose ELMER: an efficient and effective PLM for NAR text generation to explicitly model the token dependency during NAR generation. By leveraging the early exit technique, ELMER enables the token generations at different layers, according to their prediction confidence (a more confident token will exit at a lower layer). Besides, we propose a novel pre-training objective, Layer Permutation Language Modeling, to pre-train ELMER by permuting the exit layer for each token in sequences. Experiments on three text generation tasks show that ELMER significantly outperforms NAR models and further narrows the performance gap with AR PLMs (ELMER (29.92) vs BART (30.61) ROUGE-L in XSUM) while achieving over 10 times inference speedup.
To facilitate research on text generation, this paper presents a comprehensive and unified library, TextBox 2.0, focusing on the use of pre-trained language models (PLMs). To be comprehensive, our library covers 13 common text generation tasks and their corresponding 83 datasets and further incorporates 45 PLMs covering general, translation, Chinese, dialogue, controllable, distilled, prompting, and lightweight PLMs. We also implement 4 efficient training strategies and provide 4 generation objectives for pre-training new PLMs from scratch. To be unified, we design the interfaces to support the entire research pipeline (from data loading to training and evaluation), ensuring that each step can be fulfilled in a unified way. Despite the rich functionality, it is easy to use our library, either through the friendly Python API or command line. To validate the effectiveness of our library, we conduct extensive experiments and exemplify four types of research scenarios. The project is released at the link: https://github.com/RUCAIBox/TextBox#2.0.
Few-shot relation classification is difficult because the few instances available may not represent well the relation patterns. Some existing approaches explored extra information such as relation definition, in addition to the instances, to learn a better relation representation. However, the encoding of the extra information has been performed independently from the labeled instances. In this paper, we propose to learn a prototype encoder from relation definition in a way that is useful for relation instance classification. To this end, we use a joint training approach to train both a prototype encoder from definition and an instance encoder. Extensive experiments on several datasets demonstrate the effectiveness and usefulness of our prototype encoder from definition text, enabling us to outperform state-of-the-art approaches.
Multi-Document Summarization (MDS) commonly employs the 2-stage extract-then-abstract paradigm, which first extracts a relatively short meta-document, then feeds it into the deep neural networks to generate an abstract. Previous work usually takes the ROUGE score as the label for training a scoring model to evaluate source documents. However, the trained scoring model is prone to under-fitting for low-resource settings, as it relies on the training data. To extract documents effectively, we construct prompting templates that invoke the underlying knowledge in Pre-trained Language Model (PLM) to calculate the document and keyword’s perplexity, which can assess the document’s semantic salience. Our unsupervised approach can be applied as a plug-in to boost other metrics for evaluating a document’s salience, thus improving the subsequent abstract generation. We get positive results on 2 MDS datasets, 2 data settings, and 2 abstractive backbone models, showing our method’s effectiveness. Our code is available at https://github.com/THU-KEG/UPER
Deep learning models for automatic readability assessment generally discard linguistic features traditionally used in machine learning models for the task. We propose to incorporate linguistic features into neural network models by learning syntactic dense embeddings based on linguistic features. To cope with the relationships between the features, we form a correlation graph among features and use it to learn their embeddings so that similar features will be represented by similar embeddings. Experiments with six data sets of two proficiency levels demonstrate that our proposed methodology can complement BERT-only model to achieve significantly better performances for automatic readability assessment.
Graph convolutional networks (GCNs) have been applied recently to text classification and produced an excellent performance. However, existing GCN-based methods do not assume an explicit latent semantic structure of documents, making learned representations less effective and difficult to interpret. They are also transductive in nature, thus cannot handle out-of-graph documents. To address these issues, we propose a novel model named inductive Topic Variational Graph Auto-Encoder (T-VGAE), which incorporates a topic model into variational graph-auto-encoder (VGAE) to capture the hidden semantic information between documents and words. T-VGAE inherits the interpretability of the topic model and the efficient information propagation mechanism of VGAE. It learns probabilistic representations of words and documents by jointly encoding and reconstructing the global word-level graph and bipartite graphs of documents, where each document is considered individually and decoupled from the global correlation graph so as to enable inductive learning. Our experiments on several benchmark datasets show that our method outperforms the existing competitive models on supervised and semi-supervised text classification, as well as unsupervised text representation learning. In addition, it has higher interpretability and is able to deal with unseen documents.
Conditioned dialogue generation suffers from the scarcity of labeled responses. In this work, we exploit labeled non-dialogue text data related to the condition, which are much easier to collect. We propose a multi-task learning approach to leverage both labeled dialogue and text data. The 3 tasks jointly optimize the same pre-trained Transformer – conditioned dialogue generation task on the labeled dialogue data, conditioned language encoding task and conditioned language generation task on the labeled text data. Experimental results show that our approach outperforms the state-of-the-art models by leveraging the labeled texts, and it also obtains larger improvement in performance comparing to the previous methods to leverage text data.
It is appealing to have a system that generates a story or scripts automatically from a storyline, even though this is still out of our reach. In dialogue systems, it would also be useful to drive dialogues by a dialogue plan. In this paper, we address a key problem involved in these applications - guiding a dialogue by a narrative. The proposed model ScriptWriter selects the best response among the candidates that fit the context as well as the given narrative. It keeps track of what in the narrative has been said and what is to be said. A narrative plays a different role than the context (i.e., previous utterances), which is generally used in current dialogue systems. Due to the unavailability of data for this new application, we construct a new large-scale data collection GraphMovie from a movie website where end- users can upload their narratives freely when watching a movie. Experimental results on the dataset show that our proposed approach based on narratives significantly outperforms the baselines that simply use the narrative as a kind of context.
This paper describes MuTuX, our system that is designed for task 1-5a, emotion classification analysis of tweets on SemEval2018. The system aims at exploring the potential of context information of terms for emotion analysis. A Recurrent Neural Network is adopted to capture the context information of terms in tweets. Only term features and the sequential relations are used in our system. The results submitted ranks 16th out of 35 systems on the task of emotion detection in English-language tweets.
Arabic has a very rich and complex morphology. Its appropriate morphological processing is very important for Information Retrieval (IR). In this paper, we propose a new stemming technique that tries to determine the stem of a word representing the semantic core of this word according to Arabic morphology. This method is compared to a commonly used light stemming technique which truncates a word by simple rules. Our tests on TREC collections show that the new stemming technique is more effective than the light stemming.
Une approche classique en recherche d’information (RI) consiste à bâtir une représentation des documents et des requêtes basée sur les mots simples les constituant. L’utilisation de modèles bigrammes a été étudiée, mais les contraintes sur l’ordre et l’adjacence des mots dans ces travaux ne sont pas toujours justifiées pour la recherche d’information. Nous proposons une nouvelle approche basée sur les modèles de langue qui incorporent des affinités lexicales (ALs), c’est à dire des paires non ordonnées de mots qui se trouvent proches dans un texte. Nous décrivons ce modèle et le comparons aux plus traditionnels modèles unigrammes et bigrammes ainsi qu’au modèle vectoriel.