Jianbing Zhang


pdf bib
On Prefix-tuning for Lightweight Out-of-distribution Detection
Yawen Ouyang | Yongchang Cao | Yuan Gao | Zhen Wu | Jianbing Zhang | Xinyu Dai
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Out-of-distribution (OOD) detection, a fundamental task vexing real-world applications, has attracted growing attention in the NLP community. Recently fine-tuning based methods have made promising progress. However, it could be costly to store fine-tuned models for each scenario. In this paper, we depart from the classic fine-tuning based OOD detection toward a parameter-efficient alternative, and propose an unsupervised prefix-tuning based OOD detection framework termed PTO. Additionally, to take advantage of optional training data labels and targeted OOD data, two practical extensions of PTO are further proposed. Overall, PTO and its extensions offer several key advantages of being lightweight, easy-to-reproduce, and theoretically justified. Experimental results show that our methods perform comparably to, even better than, existing fine-tuning based OOD detection approaches under a wide range of metrics, detection settings, and OOD types.

pdf bib
Local Interpretation of Transformer Based on Linear Decomposition
Sen Yang | Shujian Huang | Wei Zou | Jianbing Zhang | Xinyu Dai | Jiajun Chen
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In recent years, deep neural networks (DNNs) have achieved state-of-the-art performance on a wide range of tasks. However, limitations in interpretability have hindered their applications in the real world. This work proposes to interpret neural networks by linear decomposition and finds that the ReLU-activated Transformer can be considered as a linear model on a single input. We further leverage the linearity of the model and propose a linear decomposition of the model output to generate local explanations. Our evaluation of sentiment classification and machine translation shows that our method achieves competitive performance in efficiency and fidelity of explanation. In addition, we demonstrate the potential of our approach in applications with examples of error analysis on multiple tasks.


pdf bib
Probing Cross-modal Semantics Alignment Capability from the Textual Perspective
Zheng Ma | Shi Zong | Mianzhi Pan | Jianbing Zhang | Shujian Huang | Xinyu Dai | Jiajun Chen
Findings of the Association for Computational Linguistics: EMNLP 2022

In recent years, vision and language pre-training (VLP) models have advanced the state-of-the-art results in a variety of cross-modal downstream tasks. Aligning cross-modal semantics is claimed to be one of the essential capabilities of VLP models. However, it still remains unclear about the inner working mechanism of alignment in VLP models. In this paper, we propose a new probing method that is based on image captioning to first empirically study the cross-modal semantics alignment of VLP models. Our probing method is built upon the fact that given an image-caption pair, the VLP models will give a score, indicating how well two modalities are aligned; maximizing such scores will generate sentences that VLP models believe are of good alignment. Analyzing these sentences thus will reveal in what way different modalities are aligned and how well these alignments are in VLP models. We apply our probing method to five popular VLP models, including UNITER, ROSITA, ViLBERT, CLIP, and LXMERT, and provide a comprehensive analysis of the generated captions guided by these models. Our results show that VLP models (1) focus more on just aligning objects with visual words, while neglecting global semantics; (2) prefer fixed sentence patterns, thus ignoring more important textual information including fluency and grammar; and (3) deem the captions with more visual words are better aligned with images. These findings indicate that VLP models still have weaknesses in cross-modal semantics alignment and we hope this work will draw researchers’ attention to such problems when designing a new VLP model.


pdf bib
Learning Representation Mapping for Relation Detection in Knowledge Base Question Answering
Peng Wu | Shujian Huang | Rongxiang Weng | Zaixiang Zheng | Jianbing Zhang | Xiaohui Yan | Jiajun Chen
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Relation detection is a core step in many natural language process applications including knowledge base question answering. Previous efforts show that single-fact questions could be answered with high accuracy. However, one critical problem is that current approaches only get high accuracy for questions whose relations have been seen in the training data. But for unseen relations, the performance will drop rapidly. The main reason for this problem is that the representations for unseen relations are missing. In this paper, we propose a simple mapping method, named representation adapter, to learn the representation mapping for both seen and unseen relations based on previously learned relation embedding. We employ the adversarial objective and the reconstruction objective to improve the mapping performance. We re-organize the popular SimpleQuestion dataset to reveal and evaluate the problem of detecting unseen relations. Experiments show that our method can greatly improve the performance of unseen relations while the performance for those seen part is kept comparable to the state-of-the-art.