Jianfeng He


2024

pdf bib
Uncertainty Estimation on Sequential Labeling via Uncertainty Transmission
Jianfeng He | Linlin Yu | Shuo Lei | Chang-Tien Lu | Feng Chen
Findings of the Association for Computational Linguistics: NAACL 2024

Sequential labeling is a task predicting labels for each token in a sequence, such as Named Entity Recognition (NER). NER tasks aim to extract entities and predict their labels given a text, which is important in information extraction. Although previous works have shown great progress in improving NER performance, uncertainty estimation on NER (UE-NER) is still underexplored but essential. This work focuses on UE-NER, which aims to estimate uncertainty scores for the NER predictions. Previous uncertainty estimation models often overlook two unique characteristics of NER: the connection between entities (i.e., one entity embedding is learned based on the other ones) and wrong span cases in the entity extraction subtask. Therefore, we propose a Sequential Labeling Posterior Network (SLPN) to estimate uncertainty scores for the extracted entities, considering uncertainty transmitted from other tokens. Moreover, we have defined an evaluation strategy to address the specificity of wrong-span cases. Our SLPN has achieved significant improvements on three datasets, such as a 5.54-point improvement in AUPR on the MIT-Restaurant dataset. Our code is available at https://github.com/he159ok/UncSeqLabeling_SLPN.

pdf bib
Zero-Shot End-to-End Spoken Language Understanding via Cross-Modal Selective Self-Training
Jianfeng He | Julian Salazar | Kaisheng Yao | Haoqi Li | Jason Cai
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

End-to-end (E2E) spoken language understanding (SLU) is constrained by the cost of collecting speech-semantics pairs, especially when label domains change. Hence, we explore zero-shot E2E SLU, which learns E2E SLU without speech-semantics pairs, instead using only speech-text and text-semantics pairs. Previous work achieved zero-shot by pseudolabeling all speech-text transcripts with a natural language understanding (NLU) model learned on text-semantics corpora. However, this method requires the domains of speech-text and text-semantics to match, which often mismatch due to separate collections. Furthermore, using the entire collected speech-text corpus from any domains leads to imbalance and noise issues. To address these, we propose cross-modal selective self-training (CMSST). CMSST tackles imbalance by clustering in a joint space of the three modalities (speech, text, and semantics) and handles label noise with a selection network. We also introduce two benchmarks for zero-shot E2E SLU, covering matched and found speech (mismatched) settings. Experiments show that CMSST improves performance in both two settings, with significantly reduced sample sizes and training time. Our code and data are released in https://github.com/amazon-science/zero-shot-E2E-slu.

pdf bib
Semi-Supervised Dialogue Abstractive Summarization via High-Quality Pseudolabel Selection
Jianfeng He | Hang Su | Jason Cai | Igor Shalyminov | Hwanjun Song | Saab Mansour
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Semi-supervised dialogue summarization (SSDS) leverages model-generated summaries to reduce reliance on human-labeled data and improve the performance of summarization models. While addressing label noise, previous works on semi-supervised learning primarily focus on natural language understanding tasks, assuming each sample has a unique label. However, these methods are not directly applicable to SSDS, as it is a generative task, and each dialogue can be summarized in different ways. In this work, we propose a novel scoring approach, SiCF, which encapsulates three primary dimensions of summarization model quality: Semantic invariance (indicative of model confidence), Coverage (factual recall), and Faithfulness (factual precision). Using the SiCF score, we select unlabeled dialogues with high-quality generated summaries to train summarization models. Comprehensive experiments on three public datasets demonstrate the effectiveness of SiCF scores in uncertainty estimation and semi-supervised learning for dialogue summarization tasks. Our code is available at https://github.com/amazon-science/summarization-sicf-score.

pdf bib
AMA-LSTM: Pioneering Robust and Fair Financial Audio Analysis for Stock Volatility Prediction
Shengkun Wang | Taoran Ji | Jianfeng He | Mariam ALMutairi | Dan Wang | Linhan Wang | Min Zhang | Chang-Tien Lu
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6: Industry Track)

Stock volatility prediction is an important task in the financial industry. Recent multimodal methods have shown advanced results by combining text and audio information, such as earnings calls. However, these multimodal methods have faced two drawbacks. First, they often fail to yield reliable models and overfit the data due to their absorption of stochastic information from the stock market. Moreover, using multimodal models to predict stock volatility suffers from gender bias and lacks an efficient way to eliminate such bias. To address these aforementioned problems, we use adversarial training to generate perturbations that simulate the inherent stochasticity and bias, by creating areas resistant to random information around the input space to improve model robustness and fairness. Our comprehensive experiments on two real-world financial audio datasets reveal that this method exceeds the performance of current state-of-the-art solution. This confirms the value of adversarial training in reducing stochasticity and bias for stock volatility prediction tasks.

2023

pdf bib
TART: Improved Few-shot Text Classification Using Task-Adaptive Reference Transformation
Shuo Lei | Xuchao Zhang | Jianfeng He | Fanglan Chen | Chang-Tien Lu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Meta-learning has emerged as a trending technique to tackle few-shot text classification and achieve state-of-the-art performance. However, the performance of existing approaches heavily depends on the inter-class variance of the support set. As a result, it can perform well on tasks when the semantics of sampled classes are distinct while failing to differentiate classes with similar semantics. In this paper, we propose a novel Task-Adaptive Reference Transformation (TART) network, aiming to enhance the generalization by transforming the class prototypes to per-class fixed reference points in task-adaptive metric spaces. To further maximize divergence between transformed prototypes in task-adaptive metric spaces, TART introduces a discriminative reference regularization among transformed prototypes. Extensive experiments are conducted on four benchmark datasets and our method demonstrates clear superiority over the state-of-the-art models in all the datasets. In particular, our model surpasses the state-of-the-art method by 7.4% and 5.4% in 1-shot and 5-shot classification on the 20 Newsgroups dataset, respectively.

pdf bib
LANS: Large-scale Arabic News Summarization Corpus
Abdulaziz Alhamadani | Xuchao Zhang | Jianfeng He | Aadyant Khatri | Chang-Tien Lu
Proceedings of ArabicNLP 2023

Text summarization has been intensively studied in many languages, and some languages have reached advanced stages. Yet, Arabic Text Summarization (ATS) is still in its developing stages. Existing ATS datasets are either small or lack diversity. We build, LANS, a large-scale and diverse dataset for Arabic Text Summarization task. LANS offers 8.4 million articles and their summaries extracted from newspapers websites’ metadata between 1999 and 2019. The high-quality and diverse summaries are written by journalists from 22 major Arab newspapers and include an eclectic mix of at least more than 7 topics from each source. We conduct an intrinsic evaluation on LANS by both automatic and human evaluations. Human evaluation of 1,000 random samples reports 95.4% accuracy for our collected summaries, and automatic evaluation quantifies the diversity and abstractness of the summaries.

2022

pdf bib
Uncertainty-Aware Cross-Lingual Transfer with Pseudo Partial Labels
Shuo Lei | Xuchao Zhang | Jianfeng He | Fanglan Chen | Chang-Tien Lu
Findings of the Association for Computational Linguistics: NAACL 2022

Large-scale multilingual pre-trained language models have achieved remarkable performance in zero-shot cross-lingual tasks. A recent study has demonstrated the effectiveness of self-learning-based approach on cross-lingual transfer, where only unlabeled data of target languages are required, without any efforts to annotate gold labels for target languages. However, it suffers from noisy training due to the incorrectly pseudo-labeled samples. In this work, we propose an uncertainty-aware Cross-Lingual Transfer framework with Pseudo-Partial-Label (CLTP)1 to maximize the utilization of unlabeled data by reducing the noise introduced in the training phase. To estimate pseudo-partial-label for each unlabeled data, we propose a novel estimation method, considering both prediction confidence and the limitation to the number of similar labels. Extensive experiments are conducted on two cross-lingual tasks, including Named Entity Recognition (NER) and Natural Language Inference (NLI) across 40 languages, which shows our method can outperform the baselines on both high-resource and low-resource languages, such as 6.9 on Kazakh (kk) and 5.2 Marathi (mr) for NER.

2020

pdf bib
Towards More Accurate Uncertainty Estimation In Text Classification
Jianfeng He | Xuchao Zhang | Shuo Lei | Zhiqian Chen | Fanglan Chen | Abdulaziz Alhamadani | Bei Xiao | ChangTien Lu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The uncertainty measurement of classified results is especially important in areas requiring limited human resources for higher accuracy. For instance, data-driven algorithms diagnosing diseases need accurate uncertainty score to decide whether additional but limited quantity of experts are needed for rectification. However, few uncertainty models focus on improving the performance of text classification where human resources are involved. To achieve this, we aim at generating accurate uncertainty score by improving the confidence of winning scores. Thus, a model called MSD, which includes three independent components as “mix-up”, “self-ensembling”, “distinctiveness score”, is proposed to improve the accuracy of uncertainty score by reducing the effect of overconfidence of winning score and considering the impact of different categories of uncertainty simultaneously. MSD can be applied with different Deep Neural Networks. Extensive experiments with ablation setting are conducted on four real-world datasets, on which, competitive results are obtained.