Jianguo Wei


pdf bib
Visual Spatial Description: Controlled Spatial-Oriented Image-to-Text Generation
Yu Zhao | Jianguo Wei | ZhiChao Lin | Yueheng Sun | Meishan Zhang | Min Zhang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Image-to-text tasks such as open-ended image captioning and controllable image description have received extensive attention for decades. Here we advance this line of work further, presenting Visual Spatial Description (VSD), a new perspective for image-to-text toward spatial semantics. Given an image and two objects inside it, VSD aims to produce one description focusing on the spatial perspective between the two objects. Accordingly, we annotate a dataset manually to facilitate the investigation of the newly-introduced task, and then build several benchmark encoder-decoder models by using VL-BART and VL-T5 as backbones. In addition, we investigate visual spatial relationship classification (VSRC) information into our model by pipeline and end-to-end architectures. Finally, we conduct experiments on our benchmark dataset to evaluate all our models. Results show that our models are awe-inspiring, offering accurate and human-like spatial-oriented text descriptions. Besides, VSRC has great potential for VSD, and the joint end-to-end architecture is the better choice for their integration. We will make the dataset and codes publicly available for research purposes.