Text classification struggles to generalize to unseen classes with very few labeled text instances per class. In such a few-shot learning (FSL) setting, metric-based meta-learning approaches have shown promising results. Previous studies mainly aim to derive a prototype representation for each class. However, they neglect that it is challenging-yet-unnecessary to construct a compact representation which expresses the entire meaning for each class. They also ignore the importance to capture the inter-dependency between query and the support set for few-shot text classification. To deal with these issues, we propose a meta-learning based method MGIMN which performs instance-wise comparison followed by aggregation to generate class-wise matching vectors instead of prototype learning. The key of instance-wise comparison is the interactive matching within the class-specific context and episode-specific context. Extensive experiments demonstrate that the proposed method significantly outperforms the existing SOTA approaches, under both the standard FSL and generalized FSL settings.
In this paper, we present a fast and strong neural approach for general purpose text matching applications. We explore what is sufficient to build a fast and well-performed text matching model and propose to keep three key features available for inter-sequence alignment: original point-wise features, previous aligned features, and contextual features while simplifying all the remaining components. We conduct experiments on four well-studied benchmark datasets across tasks of natural language inference, paraphrase identification and answer selection. The performance of our model is on par with the state-of-the-art on all datasets with much fewer parameters and the inference speed is at least 6 times faster compared with similarly performed ones.