Jianhan Xu


2022

pdf bib
Towards Adversarially Robust Text Classifiers by Learning to Reweight Clean Examples
Jianhan Xu | Cenyuan Zhang | Xiaoqing Zheng | Linyang Li | Cho-Jui Hsieh | Kai-Wei Chang | Xuanjing Huang
Findings of the Association for Computational Linguistics: ACL 2022

Most of the existing defense methods improve the adversarial robustness by making the models adapt to the training set augmented with some adversarial examples. However, the augmented adversarial examples may not be natural, which might distort the training distribution, resulting in inferior performance both in clean accuracy and adversarial robustness. In this study, we explore the feasibility of introducing a reweighting mechanism to calibrate the training distribution to obtain robust models. We propose to train text classifiers by a sample reweighting method in which the example weights are learned to minimize the loss of a validation set mixed with the clean examples and their adversarial ones in an online learning manner. Through extensive experiments, we show that there exists a reweighting mechanism to make the models more robust against adversarial attacks without the need to craft the adversarial examples for the entire training set.

2021

pdf bib
Searching for an Effective Defender: Benchmarking Defense against Adversarial Word Substitution
Zongyi Li | Jianhan Xu | Jiehang Zeng | Linyang Li | Xiaoqing Zheng | Qi Zhang | Kai-Wei Chang | Cho-Jui Hsieh
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent studies have shown that deep neural network-based models are vulnerable to intentionally crafted adversarial examples, and various methods have been proposed to defend against adversarial word-substitution attacks for neural NLP models. However, there is a lack of systematic study on comparing different defense approaches under the same attacking setting. In this paper, we seek to fill the gap of systematic studies through comprehensive researches on understanding the behavior of neural text classifiers trained by various defense methods under representative adversarial attacks. In addition, we propose an effective method to further improve the robustness of neural text classifiers against such attacks, and achieved the highest accuracy on both clean and adversarial examples on AGNEWS and IMDB datasets by a significant margin. We hope this study could provide useful clues for future research on text adversarial defense. Codes are available at https://github.com/RockyLzy/TextDefender.

2020

pdf bib
Cross-Lingual Dependency Parsing by POS-Guided Word Reordering
Lu Liu | Yi Zhou | Jianhan Xu | Xiaoqing Zheng | Kai-Wei Chang | Xuanjing Huang
Findings of the Association for Computational Linguistics: EMNLP 2020

We propose a novel approach to cross-lingual dependency parsing based on word reordering. The words in each sentence of a source language corpus are rearranged to meet the word order in a target language under the guidance of a part-of-speech based language model (LM). To obtain the highest reordering score under the LM, a population-based optimization algorithm and its genetic operators are designed to deal with the combinatorial nature of such word reordering. A parser trained on the reordered corpus then can be used to parse sentences in the target language. We demonstrate through extensive experimentation that our approach achieves better or comparable results across 25 target languages (1.73% increase in average), and outperforms a baseline by a significant margin on the languages that are greatly different from the source one. For example, when transferring the English parser to Hindi and Latin, our approach outperforms the baseline by 15.3% and 6.7% respectively.