Jianheng Tang


2023

pdf bib
A Fused Gromov-Wasserstein Framework for Unsupervised Knowledge Graph Entity Alignment
Jianheng Tang | Kangfei Zhao | Jia Li
Findings of the Association for Computational Linguistics: ACL 2023

Entity alignment is the task of identifying corresponding entities across different knowledge graphs (KGs). Although recent embedding-based entity alignment methods have shown significant advancements, they still struggle to fully utilize KG structural information. In this paper, we introduce FGWEA, an unsupervised entity alignment framework that leverages the Fused Gromov-Wasserstein (FGW) distance, allowing for a comprehensive comparison of entity semantics and KG structures within a joint optimization framework. To address the computational challenges associated with optimizing FGW, we devise a three-stage progressive optimization algorithm. It starts with a basic semantic embedding matching, proceeds to approximate cross-KG structural and relational similarity matching based on iterative updates of high-confidence entity links, and ultimately culminates in a global structural comparison between KGs. We perform extensive experiments on four entity alignment datasets covering 14 distinct KGs across five languages. Without any supervision or hyper-parameter tuning, FGWEA surpasses 21 competitive baselines, including cutting-edge supervised entity alignment methods. Our code is available at https://github.com/squareRoot3/FusedGW-Entity-Alignment.

2021

pdf bib
Neural-Symbolic Solver for Math Word Problems with Auxiliary Tasks
Jinghui Qin | Xiaodan Liang | Yining Hong | Jianheng Tang | Liang Lin
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Previous math word problem solvers following the encoder-decoder paradigm fail to explicitly incorporate essential math symbolic constraints, leading to unexplainable and unreasonable predictions. Herein, we propose Neural-Symbolic Solver (NS-Solver) to explicitly and seamlessly incorporate different levels of symbolic constraints by auxiliary tasks. Our NS-Solver consists of a problem reader to encode problems, a programmer to generate symbolic equations, and a symbolic executor to obtain answers. Along with target expression supervision, our solver is also optimized via 4 new auxiliary objectives to enforce different symbolic reasoning: a) self-supervised number prediction task predicting both number quantity and number locations; b) commonsense constant prediction task predicting what prior knowledge (e.g. how many legs a chicken has) is required; c) program consistency checker computing the semantic loss between predicted equation and target equation to ensure reasonable equation mapping; d) duality exploiting task exploiting the quasi-duality between symbolic equation generation and problem’s part-of-speech generation to enhance the understanding ability of a solver. Besides, to provide a more realistic and challenging benchmark for developing a universal and scalable solver, we also construct a new largescale MWP benchmark CM17K consisting of 4 kinds of MWPs (arithmetic, one-unknown linear, one-unknown non-linear, equation set) with more than 17K samples. Extensive experiments on Math23K and our CM17k demonstrate the superiority of our NS-Solver compared to state-of-the-art methods.

pdf bib
GeoQA: A Geometric Question Answering Benchmark Towards Multimodal Numerical Reasoning
Jiaqi Chen | Jianheng Tang | Jinghui Qin | Xiaodan Liang | Lingbo Liu | Eric Xing | Liang Lin
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2019

pdf bib
Target-Guided Open-Domain Conversation
Jianheng Tang | Tiancheng Zhao | Chenyan Xiong | Xiaodan Liang | Eric Xing | Zhiting Hu
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Many real-world open-domain conversation applications have specific goals to achieve during open-ended chats, such as recommendation, psychotherapy, education, etc. We study the problem of imposing conversational goals on open-domain chat agents. In particular, we want a conversational system to chat naturally with human and proactively guide the conversation to a designated target subject. The problem is challenging as no public data is available for learning such a target-guided strategy. We propose a structured approach that introduces coarse-grained keywords to control the intended content of system responses. We then attain smooth conversation transition through turn-level supervised learning, and drive the conversation towards the target with discourse-level constraints. We further derive a keyword-augmented conversation dataset for the study. Quantitative and human evaluations show our system can produce meaningful and effective conversations, significantly improving over other approaches