Jianhui Pang


2024

pdf bib
Anchor-based Large Language Models
Jianhui Pang | Fanghua Ye | Derek Wong | Xin He | Wanshun Chen | Longyue Wang
Findings of the Association for Computational Linguistics: ACL 2024

Large language models (LLMs) predominantly employ decoder-only transformer architectures, necessitating the retention of keys/values information for historical tokens to provide contextual information and avoid redundant computation. However, the substantial size and parameter volume of these LLMs require massive GPU memory. This memory demand increases with the length of the input text, leading to an urgent need for more efficient methods of information storage and processing. This study introduces Anchor-based LLMs (AnLLMs), which utilize an innovative anchor-based self-attention network (AnSAN) and also an anchor-based inference strategy. This approach enables LLMs to compress sequence information into an anchor token, reducing the keys/values cache and enhancing inference efficiency. Experiments on question-answering benchmarks reveal that AnLLMs maintain similar accuracy levels while achieving up to 99% keys/values cache reduction and up to 3.5 times faster inference. Despite a minor compromise in accuracy, the substantial enhancements of AnLLMs employing the AnSAN technique in resource utilization and computational efficiency underscore their potential for practical LLM applications.

pdf bib
Benchmarking and Improving Long-Text Translation with Large Language Models
Longyue Wang | Zefeng Du | Wenxiang Jiao | Chenyang Lyu | Jianhui Pang | Leyang Cui | Kaiqiang Song | Derek Wong | Shuming Shi | Zhaopeng Tu
Findings of the Association for Computational Linguistics: ACL 2024

Recent studies have illuminated the promising capabilities of large language models (LLMs) in handling long texts. However, their performance in machine translation (MT) of long documents remains underexplored. This paper aims to shed light on how LLMs navigate this complex task, offering a comprehensive evaluation of their capabilities and limitations in long-text MT. First, we collect and construct an instruction-based benchmark dataset, specifically designed for the finetuning and evaluation of LLMs, encompassing multilingual, multi-domain, and document-level parallel data. Second, we conduct a comprehensive comparison between MT and LLM models concerning document-level translation. Our analysis uncovers that LLMs exhibit shortcomings in long-text domains, and their performance diminishes as document size escalates. By exploiting various extrapolation strategies, we enhance the capacity of LLMs to translate longer texts. We release data, code, and models at https://github.com/longyuewangdcu/Document-MT-LLM.

pdf bib
Rethinking the Exploitation of Monolingual Data for Low-Resource Neural Machine Translation
Jianhui Pang | Baosong Yang* | Derek Fai Wong* | Yu Wan | Dayiheng Liu | Lidia Sam Chao | Jun Xie
Computational Linguistics, Volume 50, Issue 1 - March 2024

The utilization of monolingual data has been shown to be a promising strategy for addressing low-resource machine translation problems. Previous studies have demonstrated the effectiveness of techniques such as back-translation and self-supervised objectives, including masked language modeling, causal language modeling, and denoise autoencoding, in improving the performance of machine translation models. However, the manner in which these methods contribute to the success of machine translation tasks and how they can be effectively combined remains an under-researched area. In this study, we carry out a systematic investigation of the effects of these techniques on linguistic properties through the use of probing tasks, including source language comprehension, bilingual word alignment, and translation fluency. We further evaluate the impact of pre-training, back-translation, and multi-task learning on bitexts of varying sizes. Our findings inform the design of more effective pipelines for leveraging monolingual data in extremely low-resource and low-resource machine translation tasks. Experiment results show consistent performance gains in seven translation directions, which provide further support for our conclusions and understanding of the role of monolingual data in machine translation.

pdf bib
MoNMT: Modularly Leveraging Monolingual and Bilingual Knowledge for Neural Machine Translation
Jianhui Pang | Baosong Yang | Derek F. Wong | Dayiheng Liu | Xiangpeng Wei | Jun Xie | Lidia S. Chao
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The effective use of monolingual and bilingual knowledge represents a critical challenge within the neural machine translation (NMT) community. In this paper, we propose a modular strategy that facilitates the cooperation of these two types of knowledge in translation tasks, while avoiding the issue of catastrophic forgetting and exhibiting superior model generalization and robustness. Our model is comprised of three functionally independent modules: an encoding module, a decoding module, and a transferring module. The former two acquire large-scale monolingual knowledge via self-supervised learning, while the latter is trained on parallel data and responsible for transferring latent features between the encoding and decoding modules. Extensive experiments in multi-domain translation tasks indicate our model yields remarkable performance, with up to 7 BLEU improvements in out-of-domain tests over the conventional pretrain-and-finetune approach. Our codes are available at https://github.com/NLP2CT/MoNMT.