Jiannan Cao


2024

pdf bib
RA-ISF: Learning to Answer and Understand from Retrieval Augmentation via Iterative Self-Feedback
Yanming Liu | Xinyue Peng | Xuhong Zhang | Weihao Liu | Jianwei Yin | Jiannan Cao | Tianyu Du
Findings of the Association for Computational Linguistics ACL 2024

Large language models (LLMs) demonstrate exceptional performance in numerous tasks but still heavily rely on knowledge stored in their parameters. Moreover, updating this knowledge incurs high training costs. Retrieval-augmented generation (RAG) methods address this issue by integrating external knowledge. The model can answer questions it couldn’t previously by retrieving knowledge relevant to the query. This approach improves performance in certain scenarios for specific tasks. However, if irrelevant texts are retrieved, it may impair model performance. In this paper, we propose Retrieval Augmented Iterative Self-Feedback (RA-ISF), a framework that iteratively decomposes tasks and processes them in three submodules to enhance the model’s problem-solving capabilities. Experiments show that our method outperforms existing benchmarks, performing well on models like GPT3.5, Llama2, significantly enhancing factual reasoning capabilities and reducing hallucinations.

pdf bib
Unveiling the Spectrum of Data Contamination in Language Model: A Survey from Detection to Remediation
Chunyuan Deng | Yilun Zhao | Yuzhao Heng | Yitong Li | Jiannan Cao | Xiangru Tang | Arman Cohan
Findings of the Association for Computational Linguistics ACL 2024

Data contamination has garnered increased attention in the era of Large language models (LLMs) due to the reliance on extensive internet-derived training corpora. The issue of training corpus overlap with evaluation benchmarks—referred to as contamination—has been the focus of significant recent research. This body of work aims to identify contamination, understand its impacts, and explore mitigation strategies from diverse perspectives. However, comprehensive studies that provide a clear pathway from foundational concepts to advanced insights are lacking in this nascent field. Therefore, we present the first survey in the field of data contamination. We begin by examining the effects of data contamination across various stages and forms. We then provide a detailed analysis of current contamination detection methods, categorizing them to highlight their focus, assumptions, strengths, and limitations. We also discuss mitigation strategies, offering a clear guide for future research. This survey serves as a succinct overview of the most recent advancements in data contamination research, providing a straightforward guide for the benefit of future research endeavors.