Jianqiang Yang
2023
Two Birds One Stone: Dynamic Ensemble for OOD Intent Classification
Yunhua Zhou
|
Jianqiang Yang
|
Pengyu Wang
|
Xipeng Qiu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Out-of-domain (OOD) intent classification is an active field of natural language understanding, which is of great practical significance for intelligent devices such as the Task-Oriented Dialogue System. It mainly contains two challenges: it requires the model to know what it knows and what it does not know. This paper investigates “overthinking” in the open-world scenario and its impact on OOD intent classification. Inspired by this, we propose a two-birds-one-stone method, which allows the model to decide whether to make a decision on OOD classification early during inference and can ensure accuracy and accelerate inference. At the same time, to adapt to the behavior of dynamic inference, we also propose a training method based on ensemble methods. In addition to bringing certain theoretical insights, we also conduct detailed experiments on three real-world intent datasets. Compared with the previous baselines, our method can not only improve inference speed, but also achieve significant performance improvements.