Jianxin Yang


2019

pdf bib
Sequential Attention with Keyword Mask Model for Community-based Question Answering
Jianxin Yang | Wenge Rong | Libin Shi | Zhang Xiong
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

In Community-based Question Answering system(CQA), Answer Selection(AS) is a critical task, which focuses on finding a suitable answer within a list of candidate answers. For neural network models, the key issue is how to model the representations of QA text pairs and calculate the interactions between them. We propose a Sequential Attention with Keyword Mask model(SAKM) for CQA to imitate human reading behavior. Question and answer text regard each other as context within keyword-mask attention when encoding the representations, and repeat multiple times(hops) in a sequential style. So the QA pairs capture features and information from both question text and answer text, interacting and improving vector representations iteratively through hops. The flexibility of the model allows to extract meaningful keywords from the sentences and enhance diverse mutual information. We perform on answer selection tasks and multi-level answer ranking tasks. Experiment results demonstrate the superiority of our proposed model on community-based QA datasets.

pdf bib
Similarity Based Auxiliary Classifier for Named Entity Recognition
Shiyuan Xiao | Yuanxin Ouyang | Wenge Rong | Jianxin Yang | Zhang Xiong
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The segmentation problem is one of the fundamental challenges associated with name entity recognition (NER) tasks that aim to reduce the boundary error when detecting a sequence of entity words. A considerable number of advanced approaches have been proposed and most of them exhibit performance deterioration when entities become longer. Inspired by previous work in which a multi-task strategy is used to solve segmentation problems, we design a similarity based auxiliary classifier (SAC), which can distinguish entity words from non-entity words. Unlike conventional classifiers, SAC uses vectors to indicate tags. Therefore, SAC can calculate the similarities between words and tags, and then compute a weighted sum of the tag vectors, which can be considered a useful feature for NER tasks. Empirical results are used to verify the rationality of the SAC structure and demonstrate the SAC model’s potential in performance improvement against our baseline approaches.