Jiao Sun


pdf bib
Dialect-robust Evaluation of Generated Text
Jiao Sun | Thibault Sellam | Elizabeth Clark | Tu Vu | Timothy Dozat | Dan Garrette | Aditya Siddhant | Jacob Eisenstein | Sebastian Gehrmann
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Text generation metrics that are not robust to dialect variation make it impossible to tell how well systems perform for many groups of users, and can even penalize systems for producing text in lower-resource dialects. In this paper, we introduce a suite of methods to assess whether metrics are dialect robust. These methods show that state-of-the-art metrics are not dialect robust: they often prioritize dialect similarity over semantics, preferring outputs that are semantically incorrect over outputs that match the semantics of the reference but contain dialect differences. As a step towards dialect-robust metrics for text generation, we propose NANO, which introduces regional and language information to the metric’s pretraining. NANO significantly improves dialect robustness while preserving the correlation between automated metrics and human ratings. It also enables a more ambitious approach to evaluation, dialect awareness, in which system outputs are scored by both semantic match to the reference and appropriateness in any specified dialect.

pdf bib
“Kelly is a Warm Person, Joseph is a Role Model”: Gender Biases in LLM-Generated Reference Letters
Yixin Wan | George Pu | Jiao Sun | Aparna Garimella | Kai-Wei Chang | Nanyun Peng
Findings of the Association for Computational Linguistics: EMNLP 2023

Large Language Models (LLMs) have recently emerged as an effective tool to assist individuals in writing various types of content, including professional documents such as recommendation letters. Though bringing convenience, this application also introduces unprecedented fairness concerns. Model-generated reference letters might be directly used by users in professional scenarios. If underlying biases exist in these model-constructed letters, using them without scrutinization could lead to direct societal harms, such as sabotaging application success rates for female applicants. In light of this pressing issue, it is imminent and necessary to comprehensively study fairness issues and associated harms in this real-world use case. In this paper, we critically examine gender biases in LLM-generated reference letters. Drawing inspiration from social science findings, we design evaluation methods to manifest biases through 2 dimensions: (1) biases in language style and (2) biases in lexical content. We further investigate the extent of bias propagation by analyzing the hallucination bias of models, a term that we define to be bias exacerbation in model-hallucinated contents. Through benchmarking evaluation on 2 popular LLMs- ChatGPT and Alpaca, we reveal significant gender biases in LLM-generated recommendation letters. Our findings not only warn against using LLMs for this application without scrutinization, but also illuminate the importance of thoroughly studying hidden biases and harms in LLM-generated professional documents.

pdf bib
Evaluating Large Language Models on Controlled Generation Tasks
Jiao Sun | Yufei Tian | Wangchunshu Zhou | Nan Xu | Qian Hu | Rahul Gupta | John Wieting | Nanyun Peng | Xuezhe Ma
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

While recent studies have looked into the abilities of large language models in various benchmark tasks, including question generation, reading comprehension, multilingual and etc, there have been few studies looking into the controllability of large language models on generation tasks. We present an extensive analysis of various benchmarks including a sentence planning benchmark with different granularities. After comparing large language models against state-of-the-start finetuned smaller models, we present a spectrum showing large language models falling behind, are comparable, or exceed the ability of smaller models. We conclude that *large language models struggle at meeting fine-grained hard constraints*.


pdf bib
ExPUNations: Augmenting Puns with Keywords and Explanations
Jiao Sun | Anjali Narayan-Chen | Shereen Oraby | Alessandra Cervone | Tagyoung Chung | Jing Huang | Yang Liu | Nanyun Peng
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

The tasks of humor understanding and generation are challenging and subjective even for humans, requiring commonsense and real-world knowledge to master. Puns, in particular, add the challenge of fusing that knowledge with the ability to interpret lexical-semantic ambiguity. In this paper, we present the ExPUNations (ExPUN) dataset, in which we augment an existing dataset of puns with detailed crowdsourced annotations of keywords denoting the most distinctive words that make the text funny, pun explanations describing why the text is funny, and fine-grained funniness ratings. This is the first humor dataset with such extensive and fine-grained annotations specifically for puns. Based on these annotations, we propose two tasks: explanation generation to aid with pun classification and keyword-conditioned pun generation, to challenge the current state-of-the-art natural language understanding and generation models’ ability to understand and generate humor. We showcase that the annotated keywords we collect are helpful for generating better novel humorous texts in human evaluation, and that our natural language explanations can be leveraged to improve both the accuracy and robustness of humor classifiers.

pdf bib
Context-Situated Pun Generation
Jiao Sun | Anjali Narayan-Chen | Shereen Oraby | Shuyang Gao | Tagyoung Chung | Jing Huang | Yang Liu | Nanyun Peng
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Previous work on pun generation commonly begins with a given pun word (a pair of homophones for heterographic pun generation and a polyseme for homographic pun generation) and seeks to generate an appropriate pun. While this may enable efficient pun generation, we believe that a pun is most entertaining if it fits appropriately within a given context, e.g., a given situation or dialogue. In this work, we propose a new task, context-situated pun generation, where a specific context represented by a set of keywords is provided, and the task is to first identify suitable pun words that are appropriate for the context, then generate puns based on the context keywords and the identified pun words. We collect a new dataset, CUP (Context-sitUated Pun), containing 4.5k tuples of context words and pun pairs. Based on the new data and setup, we propose a pipeline system for context-situated pun generation, including a pun word retrieval module that identifies suitable pun words for a given context, and a pun generation module that generates puns from context keywords and pun words. Human evaluation shows that 69% of our top retrieved pun words can be used to generate context-situated puns, and our generation module yields successful puns 31% of the time given a plausible tuple of context words and pun pair, almost tripling the yield of a state-of-the-art pun generation model. With an end-to-end evaluation, our pipeline system with the top-1 retrieved pun pair for a given context can generate successful puns 40% of the time, better than all other modeling variations but 32% lower than the human success rate. This highlights the difficulty of the task, and encourages more research in this direction.

pdf bib
On Measures of Biases and Harms in NLP
Sunipa Dev | Emily Sheng | Jieyu Zhao | Aubrie Amstutz | Jiao Sun | Yu Hou | Mattie Sanseverino | Jiin Kim | Akihiro Nishi | Nanyun Peng | Kai-Wei Chang
Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022

Recent studies show that Natural Language Processing (NLP) technologies propagate societal biases about demographic groups associated with attributes such as gender, race, and nationality. To create interventions and mitigate these biases and associated harms, it is vital to be able to detect and measure such biases. While existing works propose bias evaluation and mitigation methods for various tasks, there remains a need to cohesively understand the biases and the specific harms they measure, and how different measures compare with each other. To address this gap, this work presents a practical framework of harms and a series of questions that practitioners can answer to guide the development of bias measures. As a validation of our framework and documentation questions, we also present several case studies of how existing bias measures in NLP—both intrinsic measures of bias in representations and extrinsic measures of bias of downstream applications—can be aligned with different harms and how our proposed documentation questions facilitates more holistic understanding of what bias measures are measuring.

pdf bib
Investigating the Benefits of Free-Form Rationales
Jiao Sun | Swabha Swayamdipta | Jonathan May | Xuezhe Ma
Findings of the Association for Computational Linguistics: EMNLP 2022

Free-form rationales aim to aid model interpretability by supplying the background knowledge that can help understand model decisions. Crowdsourced rationales are provided for commonsense QA instances in popular datasets such as CoS-E and ECQA, but their utility remains under-investigated. We present human studies which show that ECQA rationales indeed provide additional background information to understand a decision, while over 88% of CoS-E rationales do not. Inspired by this finding, we ask: can the additional context provided by free-form rationales benefit models, similar to human users? We investigate the utility of rationales as an additional source of supervision, by varying the quantity and quality of rationales during training. After controlling for instances where rationales leak the correct answer while not providing additional background knowledge, we find that incorporating only 5% of rationales during training can boost model performance by 47.22% for CoS-E and 57.14% for ECQA during inference. Moreover, we also show that rationale quality matters: compared to crowdsourced rationales, T5-generated rationales provide not only weaker supervision to models, but are also not helpful for humans in aiding model interpretability.

pdf bib
Towards Robust NLG Bias Evaluation with Syntactically-diverse Prompts
Arshiya Aggarwal | Jiao Sun | Nanyun Peng
Findings of the Association for Computational Linguistics: EMNLP 2022

We present a robust methodology for evaluating biases in natural language generation(NLG) systems. Previous works use fixed hand-crafted prefix templates with mentions of various demographic groups to prompt models to generate continuations for bias analysis. These fixed prefix templates could themselves be specific in terms of styles or linguistic structures, which may lead to unreliable fairness conclusions that are not representative of the general trends from tone varying prompts. To study this problem, we paraphrase the prompts with different syntactic structures and use these to evaluate demographic bias in NLG systems. Our results suggest similar overall bias trends but some syntactic structures lead to contradictory conclusions compared to past works. We show that our methodology is more robust and that some syntactic structures prompt more toxic content while others could prompt less biased generation. This suggests the importance of not relying on a fixed syntactic structure and using tone-invariant prompts. Introducing syntactically-diverse prompts can achieve more robust NLG (bias) evaluation.


pdf bib
Men Are Elected, Women Are Married: Events Gender Bias on Wikipedia
Jiao Sun | Nanyun Peng
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Human activities can be seen as sequences of events, which are crucial to understanding societies. Disproportional event distribution for different demographic groups can manifest and amplify social stereotypes, and potentially jeopardize the ability of members in some groups to pursue certain goals. In this paper, we present the first event-centric study of gender biases in a Wikipedia corpus. To facilitate the study, we curate a corpus of career and personal life descriptions with demographic information consisting of 7,854 fragments from 10,412 celebrities. Then we detect events with a state-of-the-art event detection model, calibrate the results using strategically generated templates, and extract events that have asymmetric associations with genders. Our study discovers that the Wikipedia pages tend to intermingle personal life events with professional events for females but not for males, which calls for the awareness of the Wikipedia community to formalize guidelines and train the editors to mind the implicit biases that contributors carry. Our work also lays the foundation for future works on quantifying and discovering event biases at the corpus level.

pdf bib
EventPlus: A Temporal Event Understanding Pipeline
Mingyu Derek Ma | Jiao Sun | Mu Yang | Kung-Hsiang Huang | Nuan Wen | Shikhar Singh | Rujun Han | Nanyun Peng
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstrations

We present EventPlus, a temporal event understanding pipeline that integrates various state-of-the-art event understanding components including event trigger and type detection, event argument detection, event duration and temporal relation extraction. Event information, especially event temporal knowledge, is a type of common sense knowledge that helps people understand how stories evolve and provides predictive hints for future events. EventPlus as the first comprehensive temporal event understanding pipeline provides a convenient tool for users to quickly obtain annotations about events and their temporal information for any user-provided document. Furthermore, we show EventPlus can be easily adapted to other domains (e.g., biomedical domain). We make EventPlus publicly available to facilitate event-related information extraction and downstream applications.

pdf bib
AESOP: Paraphrase Generation with Adaptive Syntactic Control
Jiao Sun | Xuezhe Ma | Nanyun Peng
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We propose to control paraphrase generation through carefully chosen target syntactic structures to generate more proper and higher quality paraphrases. Our model, AESOP, leverages a pretrained language model and adds deliberately chosen syntactical control via a retrieval-based selection module to generate fluent paraphrases. Experiments show that AESOP achieves state-of-the-art performances on semantic preservation and syntactic conformation on two benchmark datasets with ground-truth syntactic control from human-annotated exemplars. Moreover, with the retrieval-based target syntax selection module, AESOP generates paraphrases with even better qualities than the current best model using human-annotated target syntactic parses according to human evaluation. We further demonstrate the effectiveness of AESOP to improve classification models’ robustness to syntactic perturbation by data augmentation on two GLUE tasks.

pdf bib
ESTER: A Machine Reading Comprehension Dataset for Reasoning about Event Semantic Relations
Rujun Han | I-Hung Hsu | Jiao Sun | Julia Baylon | Qiang Ning | Dan Roth | Nanyun Peng
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Understanding how events are semantically related to each other is the essence of reading comprehension. Recent event-centric reading comprehension datasets focus mostly on event arguments or temporal relations. While these tasks partially evaluate machines’ ability of narrative understanding, human-like reading comprehension requires the capability to process event-based information beyond arguments and temporal reasoning. For example, to understand causality between events, we need to infer motivation or purpose; to establish event hierarchy, we need to understand the composition of events. To facilitate these tasks, we introduce **ESTER**, a comprehensive machine reading comprehension (MRC) dataset for Event Semantic Relation Reasoning. The dataset leverages natural language queries to reason about the five most common event semantic relations, provides more than 6K questions, and captures 10.1K event relation pairs. Experimental results show that the current SOTA systems achieve 22.1%, 63.3% and 83.5% for token-based exact-match (**EM**), **F1** and event-based **HIT@1** scores, which are all significantly below human performances (36.0%, 79.6%, 100% respectively), highlighting our dataset as a challenging benchmark.