Jiapeng Wang


2023

pdf bib
CocaCLIP: Exploring Distillation of Fully-Connected Knowledge Interaction Graph for Lightweight Text-Image Retrieval
Jiapeng Wang | Chengyu Wang | Xiaodan Wang | Jun Huang | Lianwen Jin
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

Large-scale pre-trained text-image models with dual-encoder architectures (such as CLIP) are typically adopted for various vision-language applications, including text-image retrieval. However, these models are still less practical on edge devices or for real-time situations, due to the substantial indexing and inference time and the large consumption of computational resources. Although knowledge distillation techniques have been widely utilized for uni-modal model compression, how to expand them to the situation when the numbers of modalities and teachers/students are doubled has been rarely studied. In this paper, we conduct comprehensive experiments on this topic and propose the fully-Connected knowledge interaction graph (Coca) technique for cross-modal pre-training distillation. Based on our findings, the resulting CocaCLIP achieves SOTA performances on the widely-used Flickr30K and MSCOCO benchmarks under the lightweight setting. An industry application of our method on an e-commercial platform further demonstrates the significant effectiveness of CocaCLIP.

2022

pdf bib
LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding
Jiapeng Wang | Lianwen Jin | Kai Ding
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Structured document understanding has attracted considerable attention and made significant progress recently, owing to its crucial role in intelligent document processing. However, most existing related models can only deal with the document data of specific language(s) (typically English) included in the pre-training collection, which is extremely limited. To address this issue, we propose a simple yet effective Language-independent Layout Transformer (LiLT) for structured document understanding. LiLT can be pre-trained on the structured documents of a single language and then directly fine-tuned on other languages with the corresponding off-the-shelf monolingual/multilingual pre-trained textual models. Experimental results on eight languages have shown that LiLT can achieve competitive or even superior performance on diverse widely-used downstream benchmarks, which enables language-independent benefit from the pre-training of document layout structure. Code and model are publicly available at https://github.com/jpWang/LiLT.