Jiapeng Wang


2024

pdf bib
DiffChat: Learning to Chat with Text-to-Image Synthesis Models for Interactive Image Creation
Jiapeng Wang | Chengyu Wang | Tingfeng Cao | Jun Huang | Lianwen Jin
Findings of the Association for Computational Linguistics ACL 2024

We present DiffChat, a novel method to align Large Language Models (LLMs) to “chat” with prompt-as-input Text-to-Image Synthesis (TIS)models (e.g., Stable Diffusion) for interactive image creation. Given a raw prompt/image and a user-specified instruction, DiffChat can effectively make appropriate modifications and generate the target prompt, which can be leveraged to create the target image of high quality. To achieve this, we first collect an instruction-following prompt engineering dataset named InstructPE for the supervised training of DiffChat.Next, we propose a reinforcement learning framework with the feedback of three core criteria for image creation, i.e., aesthetics, user preference and content integrity. It involves an action-space dynamic modification technique to obtain more relevant positive samples and harder negative samples during the off-policy sampling. Content integrity is also introduced into the value estimation function for further improvement of produced images. Our method can exhibit superior performance than baseline models and strong competitors based on both automatic and human evaluations, which fully demonstrates its effectiveness.

pdf bib
PPTSER: A Plug-and-Play Tag-guided Method for Few-shot Semantic Entity Recognition on Visually-rich Documents
Wenhui Liao | Jiapeng Wang | Zening Lin | Longfei Xiong | Lianwen Jin
Findings of the Association for Computational Linguistics ACL 2024

Visually-rich document information extraction (VIE) is a vital aspect of document understanding, wherein Semantic Entity Recognition (SER) plays a significant role. However, few-shot SER on visually-rich documents remains relatively unexplored despite its considerable potential for practical applications. To address this issue, we propose a simple yet effective Plug-and-Play Tag-guided method for few-shot Semantic Entity Recognition (PPTSER) on visually-rich documents. PPTSER is built upon off-the-shelf multi-modal pre-trained models. It leverages the semantics of the tags to guide the SER task, reformulating SER into entity typing and span detection, handling both tasks simultaneously via cross-attention. Experimental results illustrate that PPTSER outperforms existing fine-tuning and few-shot methods, especially in low-data regimes. With full training data, PPTSER achieves comparable or superior performance to fine-tuning baseline. For instance, on the FUNSD benchmark, our method improves the performance of LayoutLMv3-base in 1-shot, 3-shot and 5-shot scenarios by 15.61%, 2.13%, and 2.01%, respectively. Overall, PPTSER demonstrates promising generalizability, effectiveness, and plug-and-play nature for few-shot SER on visually-rich documents. The codes will be available at [https://github.com/whlscut/PPTSER](https://github.com/whlscut/PPTSER).

pdf bib
LLMBox: A Comprehensive Library for Large Language Models
Tianyi Tang | Hu Yiwen | Bingqian Li | Wenyang Luo | ZiJing Qin | Haoxiang Sun | Jiapeng Wang | Shiyi Xu | Xiaoxue Cheng | Geyang Guo | Han Peng | Bowen Zheng | Yiru Tang | Yingqian Min | Yushuo Chen | Jie Chen | Ranchi Zhao | Luran Ding | Yuhao Wang | Zican Dong | Xia Chunxuan | Junyi Li | Kun Zhou | Xin Zhao | Ji-Rong Wen
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

To facilitate the research on large language models (LLMs), this paper presents a comprehensive and unified library, LLMBox, to ease the development, use, and evaluation of LLMs. This library is featured with three main merits: (1) a unified data interface that supports the flexible implementation of various training strategies, (2) a comprehensive evaluation that covers extensive tasks, datasets, and models, and (3) more practical consideration, especially on user-friendliness and efficiency. With our library, users can easily reproduce existing methods, train new models, and conduct comprehensive performance comparisons. To rigorously test LLMBox, we conduct extensive experiments in a diverse coverage of evaluation settings, and experimental results demonstrate the effectiveness and efficiency of our library in supporting various implementations related to LLMs. The detailed introduction and usage guidance can be found at https://github.com/RUCAIBox/LLMBox.

2023

pdf bib
CocaCLIP: Exploring Distillation of Fully-Connected Knowledge Interaction Graph for Lightweight Text-Image Retrieval
Jiapeng Wang | Chengyu Wang | Xiaodan Wang | Jun Huang | Lianwen Jin
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

Large-scale pre-trained text-image models with dual-encoder architectures (such as CLIP) are typically adopted for various vision-language applications, including text-image retrieval. However, these models are still less practical on edge devices or for real-time situations, due to the substantial indexing and inference time and the large consumption of computational resources. Although knowledge distillation techniques have been widely utilized for uni-modal model compression, how to expand them to the situation when the numbers of modalities and teachers/students are doubled has been rarely studied. In this paper, we conduct comprehensive experiments on this topic and propose the fully-Connected knowledge interaction graph (Coca) technique for cross-modal pre-training distillation. Based on our findings, the resulting CocaCLIP achieves SOTA performances on the widely-used Flickr30K and MSCOCO benchmarks under the lightweight setting. An industry application of our method on an e-commercial platform further demonstrates the significant effectiveness of CocaCLIP.

2022

pdf bib
LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding
Jiapeng Wang | Lianwen Jin | Kai Ding
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Structured document understanding has attracted considerable attention and made significant progress recently, owing to its crucial role in intelligent document processing. However, most existing related models can only deal with the document data of specific language(s) (typically English) included in the pre-training collection, which is extremely limited. To address this issue, we propose a simple yet effective Language-independent Layout Transformer (LiLT) for structured document understanding. LiLT can be pre-trained on the structured documents of a single language and then directly fine-tuned on other languages with the corresponding off-the-shelf monolingual/multilingual pre-trained textual models. Experimental results on eight languages have shown that LiLT can achieve competitive or even superior performance on diverse widely-used downstream benchmarks, which enables language-independent benefit from the pre-training of document layout structure. Code and model are publicly available at https://github.com/jpWang/LiLT.