Large language models (LLMs) have shown remarkable achievements across various language tasks. To enhance the performance of LLMs in scientific literature services, we developed the scientific literature LLM (SciLit-LLM) through pre-training and supervised fine-tuning on scientific literature, building upon the iFLYTEK Spark LLM. Furthermore, we present a knowledge service system Spark Research Assistant (SparkRA) based on our SciLit-LLM. SparkRA is accessible online and provides three primary functions: literature investigation, paper reading, and academic writing. As of July 30, 2024, SparkRA has garnered over 50,000 registered users, with a total usage count exceeding 1.3 million.
Multimodal knowledge editing represents a critical advancement in enhancing the capabilities of Multimodal Large Language Models (MLLMs). Despite its potential, current benchmarks predominantly focus on coarse-grained knowledge, leaving the intricacies of fine-grained (FG) multimodal entity knowledge largely unexplored. This gap presents a notable challenge, as FG entity recognition is pivotal for the practical deployment and effectiveness of MLLMs in diverse real-world scenarios. To bridge this gap, we introduce MIKE, a comprehensive benchmark and dataset specifically designed for the FG multimodal entity knowledge editing. MIKE encompasses a suite of tasks tailored to assess different perspectives, including Vanilla Name Answering, Entity-Level Caption, and Complex-Scenario Recognition. In addition, a new form of knowledge editing, Multi-step Editing, is introduced to evaluate the editing efficiency. Through our extensive evaluations, we demonstrate that the current state-of-the-art methods face significant challenges in tackling our proposed benchmark, underscoring the complexity of FG knowledge editing in MLLMs. Our findings spotlight the urgent need for novel approaches in this domain, setting a clear agenda for future research and development efforts within the community.
Large language models (LLMs) have shown significant achievements in solving a wide range of tasks. Recently, LLMs’ capability to store, retrieve and infer with symbolic knowledge has drawn a great deal of attention, showing their potential to understand structured information. However, it is not yet known whether LLMs can understand Description Logic (DL) ontologies. In this work, we empirically analyze the LLMs’ capability of understanding DL-Lite ontologies covering 6 representative tasks from syntactic and semantic aspects. With extensive experiments, we demonstrate both the effectiveness and limitations of LLMs in understanding DL-Lite ontologies. We find that LLMs can understand formal syntax and model-theoretic semantics of concepts and roles. However, LLMs struggle with understanding TBox NI transitivity and handling ontologies with large ABoxes. We hope that our experiments and analyses provide more insights into LLMs and inspire to build more faithful knowledge engineering solutions.
Large language models (LLMs) are typically limited to processing texts within context window size, which has spurred significant research efforts into enhancing LLMs’ long-context understanding as well as developing high-quality benchmarks to evaluate the ability. However, prior datasets suffer from short comings like short length compared to the context window of modern LLMs; outdated documents that might have data leakage problems; and an emphasis on short dependency tasks only. In this paper, we present LooGLE , a Long Context Generic Language Evaluation benchmark. It features documents post-2022, with over 24,000 tokens per document and 6,000 newly generated questions spanning varying dependency ranges in diverse domains. Human annotators meticulously crafted over 1,100 high-quality question-answer (QA) pairs with thorough cross-validation for a most precise assessment of LLMs’ long dependency capabilities. We conduct a comprehensive evaluation of representative LLMs on LooGLE . The results indicate that most LLMs have shockingly bad long context ability and fail to capture long dependencies in the context, even when their context window size is enough to fit the entire document. Our results shed light on enhancing the “true long-context understanding” ability of LLMs instead of merely enlarging their context window.
Text-video based multimodal event extraction refers to identifying event information from the given text-video pairs. Existing methods predominantly utilize video appearance features (VAF) and text sequence features (TSF) as input information. Some of them employ contrastive learning to align VAF with the event types extracted from TSF. However, they disregard the motion representations in videos and the optimization of contrastive objective could be misguided by the background noise from RGB frames. We observe that the same event triggers correspond to similar motion trajectories, which are hardly affected by the background noise. Moviated by this, we propose a Three Stream Multimodal Event Extraction framework (TSEE) that simultaneously utilizes the features of text sequence and video appearance, as well as the motion representations to enhance the event extraction capacity. Firstly, we extract the optical flow features (OFF) as motion representations from videos to incorporate with VAF and TSF. Then we introduce a Multi-level Event Contrastive Learning module to align the embedding space between OFF and event triggers, as well as between event triggers and types. Finally, a Dual Querying Text module is proposed to enhance the interaction between modalities. Experimental results show that TSEE outperforms the state-of-the-art methods, which demonstrates its superiority.
Research into the area of multiparty dialog has grown considerably over recent years. We present the Molweni dataset, a machine reading comprehension (MRC) dataset with discourse structure built over multiparty dialog. Molweni’s source samples from the Ubuntu Chat Corpus, including 10,000 dialogs comprising 88,303 utterances. We annotate 30,066 questions on this corpus, including both answerable and unanswerable questions. Molweni also uniquely contributes discourse dependency annotations in a modified Segmented Discourse Representation Theory (SDRT; Asher et al., 2016) style for all of its multiparty dialogs, contributing large-scale (78,245 annotated discourse relations) data to bear on the task of multiparty dialog discourse parsing. Our experiments show that Molweni is a challenging dataset for current MRC models: BERT-wwm, a current, strong SQuAD 2.0 performer, achieves only 67.7% F1 on Molweni’s questions, a 20+% significant drop as compared against its SQuAD 2.0 performance.