Jiarui Li
2023
Bipartite Graph Pre-training for Unsupervised Extractive Summarization with Graph Convolutional Auto-Encoders
Qianren Mao
|
Shaobo Zhao
|
Jiarui Li
|
Xiaolei Gu
|
Shizhu He
|
Bo Li
|
Jianxin Li
Findings of the Association for Computational Linguistics: EMNLP 2023
Pre-trained sentence representations are crucial for identifying significant sentences in unsupervised document extractive summarization. However, the traditional two-step paradigm of pre-training and sentence-ranking, creates a gap due to differing optimization objectives. To address this issue, we argue that utilizing pre-trained embeddings derived from a process specifically designed to optimize informative and distinctive sentence representations helps rank significant sentences. To do so, we propose a novel graph pre-training auto-encoder to obtain sentence embeddings by explicitly modelling intra-sentential distinctive features and inter-sentential cohesive features through sentence-word bipartite graphs. These fine-tuned sentence embeddings are then utilized in a graph-based ranking algorithm for unsupervised summarization. Our method is a plug-and-play pre-trained model that produces predominant performance for unsupervised summarization frameworks by providing summary-worthy sentence representations. It surpasses heavy BERT- or RoBERTa-based sentence representations in downstream tasks.
2022
Tencent’s Multilingual Machine Translation System for WMT22 Large-Scale African Languages
Wenxiang Jiao
|
Zhaopeng Tu
|
Jiarui Li
|
Wenxuan Wang
|
Jen-tse Huang
|
Shuming Shi
Proceedings of the Seventh Conference on Machine Translation (WMT)
This paper describes Tencent’s multilingual machine translation systems for the WMT22 shared task on Large-Scale Machine Translation Evaluation for African Languages. We participated in the constrained translation track in which only the data and pretrained models provided by the organizer are allowed. The task is challenging due to three problems, including the absence of training data for some to-be-evaluated language pairs, the uneven optimization of language pairs caused by data imbalance, and the curse of multilinguality. To address these problems, we adopt data augmentation, distributionally robust optimization, and language family grouping, respectively, to develop our multilingual neural machine translation (MNMT) models. Our submissions won the 1st place on the blind test sets in terms of the automatic evaluation metrics. Codes, models, and detailed competition results are available at https://github.com/wxjiao/WMT2022-Large-Scale-African.
Search
Fix data
Co-authors
- Xiaolei Gu 1
- Shizhu He (何世柱) 1
- Jen-tse Huang 1
- Wenxiang Jiao 1
- Bo Li 1
- show all...