This paper reports on the shared tasks organized by the 21st IWSLT Conference. The shared tasks address 7 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, dialect and low-resource speech translation, and Indic languages. The shared tasks attracted 17 teams whose submissions are documented in 27 system papers. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
Thousands of the world’s languages are in danger of extinction—a tremendous threat to cultural identities and human language diversity. Interlinear Glossed Text (IGT) is a form of linguistic annotation that can support documentation and resource creation for these languages’ communities. IGT typically consists of (1) transcriptions, (2) morphological segmentation, (3) glosses, and (4) free translations to a majority language. We propose Wav2Gloss: a task in which these four annotation components are extracted automatically from speech, and introduce the first dataset to this end, Fieldwork: a corpus of speech with all these annotations, derived from the work of field linguists, covering 37 languages, with standard formatting, and train/dev/test splits. We provide various baselines to lay the groundwork for future research on IGT generation from speech, such as end-to-end versus cascaded, monolingual versus multilingual, and single-task versus multi-task approaches.
Large language models (LLMs) have successfully served as a general-purpose interface across multiple tasks and languages, while the adaptation of voice LLMs is mostly designed for specific purposes (either single-task or monolingual), where the advantages of LLMs especially for low-resource language processing and zero-shot task generalization are less exploited in the audio community. To bridge the gap, we introduce Make-A-Voice as a multi-modal voice LLM and conduct a comprehensive study on its capability to deal with multiple tasks/languages. When trained on ~200K hours of 6-language data for 4 voice generation applications, Make-A-Voice emerges notable advantages: 1) as scalable learners to improve performance with end-to-end local and global multiscale transformers; and 2) as multitask learners by adjusting prompts to share common knowledge across modalities (speech/singing) and present in-context learning abilities by generalizing to unseen tasks not explicitly train on; 3) as multilingual learners to alleviate data scarcity of low-resource languages by including rich-resource language training data. Experimental results demonstrate that Make-A-Voice exhibits superior audio quality and style similarity compared with competitive baseline models in monolingual/cross-lingual voice generation. Audio samples are available at https://M-Voice.github.io
As a special task of natural language generation, conditional lyrics generation needs to consider the structure of generated lyrics and the relationship between lyrics and music. Due to various forms of conditions, a lyrics generation system is expected to generate lyrics conditioned on different signals, such as music scores, music audio, or partially-finished lyrics, etc. However, most of the previous works have ignored the musical attributes hidden behind the lyrics and the structure of the lyrics. Additionally, most works only handle limited lyrics generation conditions, such as lyrics generation based on music score or partial lyrics, they can not be easily extended to other generation conditions with the same framework. In this paper, we propose a unified structure-aware lyrics generation framework named UniLG. Specifically, we design compound templates that incorporate textual and musical information to improve structure modeling and unify the different lyrics generation conditions. Extensive experiments demonstrate the effectiveness of our framework. Both objective and subjective evaluations show significant improvements in generating structural lyrics.
ESPnet-ST-v2 is a revamp of the open-source ESPnet-ST toolkit necessitated by the broadening interests of the spoken language translation community. ESPnet-ST-v2 supports 1) offline speech-to-text translation (ST), 2) simultaneous speech-to-text translation (SST), and 3) offline speech-to-speech translation (S2ST) – each task is supported with a wide variety of approaches, differentiating ESPnet-ST-v2 from other open source spoken language translation toolkits. This toolkit offers state-of-the-art architectures such as transducers, hybrid CTC/attention, multi-decoders with searchable intermediates, time-synchronous blockwise CTC/attention, Translatotron models, and direct discrete unit models. In this paper, we describe the overall design, example models for each task, and performance benchmarking behind ESPnet-ST-v2, which is publicly available at https://github.com/espnet/espnet.
This paper reports on the shared tasks organized by the 20th IWSLT Conference. The shared tasks address 9 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, multilingual, dialect and low-resource speech translation, and formality control. The shared tasks attracted a total of 38 submissions by 31 teams. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
This paper describes CMU’s submission to the IWSLT 2023 simultaneous speech translation shared task for translating English speech to both German text and speech in a streaming fashion. We first build offline speech-to-text (ST) models using the joint CTC/attention framework. These models also use WavLM front-end features and mBART decoder initialization. We adapt our offline ST models for simultaneous speech-to-text translation (SST) by 1) incrementally encoding chunks of input speech, re-computing encoder states for each new chunk and 2) incrementally decoding output text, pruning beam search hypotheses to 1-best after processing each chunk. We then build text-to-speech (TTS) models using the VITS framework and achieve simultaneous speech-to-speech translation (SS2ST) by cascading our SST and TTS models.
Transfer learning has proven to be crucial in advancing the state of speech and natural language processing research in recent years. In speech, a model pre-trained by self-supervised learning transfers remarkably well on multiple tasks. However, the lack of a consistent evaluation methodology is limiting towards a holistic understanding of the efficacy of such models. SUPERB was a step towards introducing a common benchmark to evaluate pre-trained models across various speech tasks. In this paper, we introduce SUPERB-SG, a new benchmark focusing on evaluating the semantic and generative capabilities of pre-trained models by increasing task diversity and difficulty over SUPERB. We use a lightweight methodology to test the robustness of representations learned by pre-trained models under shifts in data domain and quality across different types of tasks. It entails freezing pre-trained model parameters, only using simple task-specific trainable heads. The goal is to be inclusive of all researchers, and encourage efficient use of computational resources. We also show that the task diversity of SUPERB-SG coupled with limited task supervision is an effective recipe for evaluating the generalizability of model representation.
The evaluation campaign of the 19th International Conference on Spoken Language Translation featured eight shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Speech to speech translation, (iv) Low-resource speech translation, (v) Multilingual speech translation, (vi) Dialect speech translation, (vii) Formality control for speech translation, (viii) Isometric speech translation. A total of 27 teams participated in at least one of the shared tasks. This paper details, for each shared task, the purpose of the task, the data that were released, the evaluation metrics that were applied, the submissions that were received and the results that were achieved.
This paper describes CMU’s submissions to the IWSLT 2022 dialect speech translation (ST) shared task for translating Tunisian-Arabic speech to English text. We use additional paired Modern Standard Arabic data (MSA) to directly improve the speech recognition (ASR) and machine translation (MT) components of our cascaded systems. We also augment the paired ASR data with pseudo translations via sequence-level knowledge distillation from an MT model and use these artificial triplet ST data to improve our end-to-end (E2E) systems. Our E2E models are based on the Multi-Decoder architecture with searchable hidden intermediates. We extend the Multi-Decoder by orienting the speech encoder towards the target language by applying ST supervision as hierarchical connectionist temporal classification (CTC) multi-task. During inference, we apply joint decoding of the ST CTC and ST autoregressive decoder branches of our modified Multi-Decoder. Finally, we apply ROVER voting, posterior combination, and minimum bayes-risk decoding with combined N-best lists to ensemble our various cascaded and E2E systems. Our best systems reached 20.8 and 19.5 BLEU on test2 (blind) and test1 respectively. Without any additional MSA data, we reached 20.4 and 19.2 on the same test sets.
Documentation of endangered languages (ELs) has become increasingly urgent as thousands of languages are on the verge of disappearing by the end of the 21st century. One challenging aspect of documentation is to develop machine learning tools to automate the processing of EL audio via automatic speech recognition (ASR), machine translation (MT), or speech translation (ST). This paper presents an open-access speech translation corpus of Highland Puebla Nahuatl (glottocode high1278), an EL spoken in central Mexico. It then addresses machine learning contributions to endangered language documentation and argues for the importance of speech translation as a key element in the documentation process. In our experiments, we observed that state-of-the-art end-to-end ST models could outperform a cascaded ST (ASR > MT) pipeline when translating endangered language documentation materials.
This paper describes three open access Yoloxóchitl Mixtec corpora and presents the results and implications of end-to-end automatic speech recognition for endangered language documentation. Two issues are addressed. First, the advantage for ASR accuracy of targeting informational (BPE) units in addition to, or in substitution of, linguistic units (word, morpheme, morae) and then using ROVER for system combination. BPE units consistently outperform linguistic units although the best results are obtained by system combination of different BPE targets. Second, a case is made that for endangered language documentation, ASR contributions should be evaluated according to extrinsic criteria (e.g., positive impact on downstream tasks) and not simply intrinsic metrics (e.g., CER and WER). The extrinsic metric chosen is the level of reduction in the human effort needed to produce high-quality transcriptions for permanent archiving.
“Transcription bottlenecks”, created by a shortage of effective human transcribers (i.e., transcriber shortage), are one of the main challenges to endangered language (EL) documentation. Automatic speech recognition (ASR) has been suggested as a tool to overcome such bottlenecks. Following this suggestion, we investigated the effectiveness for EL documentation of end-to-end ASR, which unlike Hidden Markov Model ASR systems, eschews linguistic resources but is instead more dependent on large-data settings. We open source a Yoloxóchitl Mixtec EL corpus. First, we review our method in building an end-to-end ASR system in a way that would be reproducible by the ASR community. We then propose a novice transcription correction task and demonstrate how ASR systems and novice transcribers can work together to improve EL documentation. We believe this combinatory methodology would mitigate the transcription bottleneck and transcriber shortage that hinders EL documentation.
This paper describes the ESPnet-ST group’s IWSLT 2021 submission in the offline speech translation track. This year we made various efforts on training data, architecture, and audio segmentation. On the data side, we investigated sequence-level knowledge distillation (SeqKD) for end-to-end (E2E) speech translation. Specifically, we used multi-referenced SeqKD from multiple teachers trained on different amounts of bitext. On the architecture side, we adopted the Conformer encoder and the Multi-Decoder architecture, which equips dedicated decoders for speech recognition and translation tasks in a unified encoder-decoder model and enables search in both source and target language spaces during inference. We also significantly improved audio segmentation by using the pyannote.audio toolkit and merging multiple short segments for long context modeling. Experimental evaluations showed that each of them contributed to large improvements in translation performance. Our best E2E system combined all the above techniques with model ensembling and achieved 31.4 BLEU on the 2-ref of tst2021 and 21.2 BLEU and 19.3 BLEU on the two single references of tst2021.