Jiawei Yu


2024

pdf bib
CB-Whisper: Contextual Biasing Whisper Using Open-Vocabulary Keyword-Spotting
Yuang Li | Yinglu Li | Min Zhang | Chang Su | Jiawei Yu | Mengyao Piao | Xiaosong Qiao | Miaomiao Ma | Yanqing Zhao | Hao Yang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

End-to-end automatic speech recognition (ASR) systems often struggle to recognize rare name entities, such as personal names, organizations and terminologies that are not frequently encountered in the training data. This paper presents Contextual Biasing Whisper (CB-Whisper), a novel ASR system based on OpenAI’s Whisper model that can recognize user-defined name entities by performing open-vocabulary keyword-spotting (KWS) before the decoder. The KWS module leverages text-to-speech (TTS) techniques and a convolutional neural network (CNN) classifier to match the features between the entities and the utterances. To integrate the recognized entities into the Whipser decoder and avoid hallucinations, we carefully crafted multiple prompts with spoken form hints. Experiments show that the KWS module based on Whisper encoder’s features can recognize unseen user-defined keywords effectively. More importantly, the proposed CB-Whisper substantially improves the mixed-error-rate (MER) and entity recall compared to the original Whisper model on three internal datasets and two publicly available datasets including Aishell and ACL datasets that cover English-only, Chinese-only, and code-switching scenarios.

pdf bib
HW-TSC’s Participation in the WMT 2024 QEAPE Task
Jiawei Yu | Xiaofeng Zhao | Min Zhang | Zhao Yanqing | Yuang Li | Su Chang | Xiaosong Qiao | Ma Miaomiao | Hao Yang
Proceedings of the Ninth Conference on Machine Translation

The paper presents the submission by HW-TSC in the WMT 2024 Quality-informed Automatic Post Editing (QEAPE) shared task for the English-Hindi (En-Hi) and English-Tamil (En-Ta) language pair. We use LLM for En-Hi and Transformer for EN-ta respectively. For LLM, we first continue pertrain the Llama3, and then use the real APE data to SFT the pre-trained LLM. As for the transformer in En-Ta, we first pre-train a Machine Translation (MT) model by utilizing MT data collected from the web. Then, we fine-tune the model by employing real APE data.We also use the data augmentation method to enhance our model. Specifically, we incorporate candidate translations obtained from an external Machine Translation (MT) system.Given that APE systems tend to exhibit a tendency of ‘over-correction’, we employ a sentence-level Quality Estimation (QE) system to select the final output, deciding between the original translation and the corresponding output generated by the APE model. Our experiments demonstrate that pre-trained MT models are effective when being fine-tuned with the APE corpus of a limited size, and the performance can be further improved with external MT augmentation. our approach improves the HTER by -15.99 points and -0.47 points on En-Hi and En-Ta, respectively.

2023

pdf bib
Exploring Better Text Image Translation with Multimodal Codebook
Zhibin Lan | Jiawei Yu | Xiang Li | Wen Zhang | Jian Luan | Bin Wang | Degen Huang | Jinsong Su
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Text image translation (TIT) aims to translate the source texts embedded in the image to target translations, which has a wide range of applications and thus has important research value. However, current studies on TIT are confronted with two main bottlenecks: 1) this task lacks a publicly available TIT dataset, 2) dominant models are constructed in a cascaded manner, which tends to suffer from the error propagation of optical character recognition (OCR). In this work, we first annotate a Chinese-English TIT dataset named OCRMT30K, providing convenience for subsequent studies. Then, we propose a TIT model with a multimodal codebook, which is able to associate the image with relevant texts, providing useful supplementary information for translation. Moreover, we present a multi-stage training framework involving text machine translation, image-text alignment, and TIT tasks, which fully exploits additional bilingual texts, OCR dataset and our OCRMT30K dataset to train our model. Extensive experiments and in-depth analyses strongly demonstrate the effectiveness of our proposed model and training framework.

pdf bib
HW-TSC’s Participation in the WMT 2023 Automatic Post Editing Shared Task
Jiawei Yu | Min Zhang | Zhao Yanqing | Xiaofeng Zhao | Yuang Li | Su Chang | Yinglu Li | Ma Miaomiao | Shimin Tao | Hao Yang
Proceedings of the Eighth Conference on Machine Translation

The paper presents the submission by HW-TSC in the WMT 2023 Automatic Post Editing (APE) shared task for the English-Marathi (En-Mr) language pair. Our method encompasses several key steps. First, we pre-train an APE model by utilizing synthetic APE data provided by the official task organizers. Then, we fine-tune the model by employing real APE data. For data augmentation, we incorporate candidate translations obtained from an external Machine Translation (MT) system. Furthermore, we integrate the En-Mr parallel corpus from the Flores-200 dataset into our training data. To address the overfitting issue, we employ R-Drop during the training phase. Given that APE systems tend to exhibit a tendency of ‘over-correction’, we employ a sentence-level Quality Estimation (QE) system to select the final output, deciding between the original translation and the corresponding output generated by the APE model. Our experiments demonstrate that pre-trained APE models are effective when being fine-tuned with the APE corpus of a limited size, and the performance can be further improved with external MT augmentation. Our approach improves the TER and BLEU scores on the development set by -2.42 and +3.76 points, respectively.