Jiawei Zhang


pdf bib
Contrastive Hierarchical Discourse Graph for Scientific Document Summarization
Haopeng Zhang | Xiao Liu | Jiawei Zhang
Proceedings of the 4th Workshop on Computational Approaches to Discourse (CODI 2023)

The extended structural context has made scientific paper summarization a challenging task. This paper proposes CHANGES, a contrastive hierarchical graph neural network for extractive scientific paper summarization. CHANGES represents a scientific paper with a hierarchical discourse graph and learns effective sentence representations with dedicated designed hierarchical graph information aggregation. We also propose a graph contrastive learning module to learn global theme-aware sentence representations. Extensive experiments on the PubMed and arXiv benchmark datasets prove the effectiveness of CHANGES and the importance of capturing hierarchical structure information in modeling scientific papers.

pdf bib
DiffuSum: Generation Enhanced Extractive Summarization with Diffusion
Haopeng Zhang | Xiao Liu | Jiawei Zhang
Findings of the Association for Computational Linguistics: ACL 2023

Extractive summarization aims to form a summary by directly extracting sentences from the source document. Existing works mostly formulate it as a sequence labeling problem by making individual sentence label predictions. This paper proposes DiffuSum, a novel paradigm for extractive summarization, by directly generating the desired summary sentence representations with diffusion models and extracting sentences based on sentence representation matching. In addition, DiffuSum jointly optimizes a contrastive sentence encoder with a matching loss for sentence representation alignment and a multi-class contrastive loss for representation diversity. Experimental results show that DiffuSum achieves the new state-of-the-art extractive results on CNN/DailyMail with ROUGE scores of 44.83/22.56/40.56. Experiments on the other two datasets with different summary lengths and cross-dataset evaluation also demonstrate the effectiveness of DiffuSum. The strong performance of our framework shows the great potential of adapting generative models for extractive summarization.


pdf bib
HEGEL: Hypergraph Transformer for Long Document Summarization
Haopeng Zhang | Xiao Liu | Jiawei Zhang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Extractive summarization for long documents is challenging due to the extended structured input context. The long-distance sentence dependency hinders cross-sentence relations modeling, the critical step of extractive summarization. This paper proposes HEGEL, a hypergraph neural network for long document summarization by capturing high-order cross-sentence relations. HEGEL updates and learns effective sentence representations with hypergraph transformer layers and fuses different types of sentence dependencies, including latent topics, keywords coreference, and section structure. We validate HEGEL by conducting extensive experiments on two benchmark datasets, and experimental results demonstrate the effectiveness and efficiency of HEGEL.


pdf bib
Text Graph Transformer for Document Classification
Haopeng Zhang | Jiawei Zhang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Text classification is a fundamental problem in natural language processing. Recent studies applied graph neural network (GNN) techniques to capture global word co-occurrence in a corpus. However, previous works are not scalable to large-sized corpus and ignore the heterogeneity of the text graph. To address these problems, we introduce a novel Transformer based heterogeneous graph neural network, namely Text Graph Transformer (TG-Transformer). Our model learns effective node representations by capturing structure and heterogeneity from the text graph. We propose a mini-batch text graph sampling method that significantly reduces computing and memory costs to handle large-sized corpus. Extensive experiments have been conducted on several benchmark datasets, and the results demonstrate that TG-Transformer outperforms state-of-the-art approaches on text classification task.


pdf bib
Parallax: Visualizing and Understanding the Semantics of Embedding Spaces via Algebraic Formulae
Piero Molino | Yang Wang | Jiawei Zhang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

Embeddings are a fundamental component of many modern machine learning and natural language processing models. Understanding them and visualizing them is essential for gathering insights about the information they capture and the behavior of the models. In this paper, we introduce Parallax, a tool explicitly designed for this task. Parallax allows the user to use both state-of-the-art embedding analysis methods (PCA and t-SNE) and a simple yet effective task-oriented approach where users can explicitly define the axes of the projection through algebraic formulae. %consists in projecting them in two-dimensional planes without any interpretable semantics associated to the axes of the projection, which makes detailed analyses and comparison among multiple sets of embeddings challenging. In this approach, embeddings are projected into a semantically meaningful subspace, which enhances interpretability and allows for more fine-grained analysis. We demonstrate the power of the tool and the proposed methodology through a series of case studies and a user study.