2023
pdf
bib
abs
Length-Aware NMT and Adaptive Duration for Automatic Dubbing
Zhiqiang Rao
|
Hengchao Shang
|
Jinlong Yang
|
Daimeng Wei
|
Zongyao Li
|
Jiaxin Guo
|
Shaojun Li
|
Zhengzhe Yu
|
Zhanglin Wu
|
Yuhao Xie
|
Bin Wei
|
Jiawei Zheng
|
Lizhi Lei
|
Hao Yang
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)
This paper presents the submission of Huawei Translation Services Center for the IWSLT 2023 dubbing task in the unconstrained setting. The proposed solution consists of a Transformer-based machine translation model and a phoneme duration predictor. The Transformer is deep and multiple target-to-source length-ratio class labels are used to control target lengths. The variation predictor in FastSpeech2 is utilized to predict phoneme durations. To optimize the isochrony in dubbing, re-ranking and scaling are performed. The source audio duration is used as a reference to re-rank the translations of different length-ratio labels, and the one with minimum time deviation is preferred. Additionally, the phoneme duration outputs are scaled within a defined threshold to narrow the duration gap with the source audio.
pdf
bib
abs
Improving Neural Machine Translation Formality Control with Domain Adaptation and Reranking-based Transductive Learning
Zhanglin Wu
|
Zongyao Li
|
Daimeng Wei
|
Hengchao Shang
|
Jiaxin Guo
|
Xiaoyu Chen
|
Zhiqiang Rao
|
Zhengzhe Yu
|
Jinlong Yang
|
Shaojun Li
|
Yuhao Xie
|
Bin Wei
|
Jiawei Zheng
|
Ming Zhu
|
Lizhi Lei
|
Hao Yang
|
Yanfei Jiang
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)
This paper presents Huawei Translation Service Center (HW-TSC)’s submission on the IWSLT 2023 formality control task, which provides two training scenarios: supervised and zero-shot, each containing two language pairs, and sets constrained and unconstrained conditions. We train the formality control models for these four language pairs under these two conditions respectively, and submit the corresponding translation results. Our efforts are divided into two fronts: enhancing general translation quality and improving formality control capability. According to the different requirements of the formality control task, we use a multi-stage pre-training method to train a bilingual or multilingual neural machine translation (NMT) model as the basic model, which can improve the general translation quality of the base model to a relatively high level. Then, under the premise of affecting the general translation quality of the basic model as little as possible, we adopt domain adaptation and reranking-based transductive learning methods to improve the formality control capability of the model.