Jiayi Pan


pdf bib
Grounding Visual Illusions in Language: Do Vision-Language Models Perceive Illusions Like Humans?
Yichi Zhang | Jiayi Pan | Yuchen Zhou | Rui Pan | Joyce Chai
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Vision-Language Models (VLMs) are trained on vast amounts of data captured by humans emulating our understanding of the world. However, known as visual illusions, human’s perception of reality isn’t always faithful to the physical world. This raises a key question: do VLMs have the similar kind of illusions as humans do, or do they faithfully learn to represent reality? To investigate this question, we build a dataset containing five types of visual illusions and formulate four tasks to examine visual illusions in state-of-the-art VLMs. Our findings have shown that although the overall alignment is low, larger models are closer to human perception and more susceptible to visual illusions. Our dataset and initial findings will promote a better understanding of visual illusions in humans and machines and provide a stepping stone for future computational models that can better align humans and machines in perceiving and communicating about the shared visual world. The code and data are available at [github.com/vl-illusion/dataset](https://github.com/vl-illusion/dataset).

pdf bib
World-to-Words: Grounded Open Vocabulary Acquisition through Fast Mapping in Vision-Language Models
Ziqiao Ma | Jiayi Pan | Joyce Chai
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The ability to connect language units to their referents in the physical world, referred to as grounding, is crucial to learning and understanding grounded meanings of words. While humans demonstrate fast mapping in new word learning, it remains unclear whether modern vision-language models can truly represent language with their grounded meanings, and how grounding may further bootstrap new word learning. To this end, we introduce Grounded Open Vocabulary Acquisition (GOVA) to examine grounding and bootstrapping in open-world language learning. As an initial attempt, we propose World-to-Words (W2W), a novel visually-grounded language model by pre-training on image-text pairs highlighting grounding as an objective. Through extensive experiments and analysis, we demonstrate that W2W is a more coherent and fast grounded word learner, and that the grounding ability acquired during pre-training helps the model to learn unseen words more rapidly and robustly.


pdf bib
DANLI: Deliberative Agent for Following Natural Language Instructions
Yichi Zhang | Jianing Yang | Jiayi Pan | Shane Storks | Nikhil Devraj | Ziqiao Ma | Keunwoo Yu | Yuwei Bao | Joyce Chai
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recent years have seen an increasing amount of work on embodied AI agents that can perform tasks by following human language instructions. However, most of these agents are reactive, meaning that they simply learn and imitate behaviors encountered in the training data. These reactive agents are insufficient for long-horizon complex tasks. To address this limitation, we propose a neuro-symbolic deliberative agent that, while following language instructions, proactively applies reasoning and planning based on its neural and symbolic representations acquired from past experience (e.g., natural language and egocentric vision). We show that our deliberative agent achieves greater than 70% improvement over reactive baselines on the challenging TEACh benchmark. Moreover, the underlying reasoning and planning processes, together with our modular framework, offer impressive transparency and explainability to the behaviors of the agent. This enables an in-depth understanding of the agent’s capabilities, which shed light on challenges and opportunities for future embodied agents for instruction following. The code is available at https://github.com/sled-group/DANLI.