Jiazhao Li


2024

pdf bib
ChatGPT as an Attack Tool: Stealthy Textual Backdoor Attack via Blackbox Generative Model Trigger
Jiazhao Li | Yijin Yang | Zhuofeng Wu | V.G.Vinod Vydiswaran | Chaowei Xiao
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Textual backdoor attacks, characterized by subtle manipulations of input triggers and training dataset labels, pose significant threats to security-sensitive applications. The rise of advanced generative models, such as GPT-4, with their capacity for human-like rewriting, makes these attacks increasingly challenging to detect. In this study, we conduct an in-depth examination of black-box generative models as tools for backdoor attacks, thereby emphasizing the need for effective defense strategies. We propose BGMAttack, a novel framework that harnesses advanced generative models to execute stealthier backdoor attacks on text classifiers. Unlike prior approaches constrained by subpar generation quality, BGMAttack renders backdoor triggers more elusive to human cognition and advanced machine detection. A rigorous evaluation of attack effectiveness over four sentiment classification tasks, complemented by four human cognition stealthiness tests, reveals BGMAttack’s superior performance, achieving a state-of-the-art attack success rate of 97.35% on average while maintaining superior stealth compared to conventional methods. The dataset and code are available: https://github.com/JiazhaoLi/BGMAttack.

2023

pdf bib
Defending against Insertion-based Textual Backdoor Attacks via Attribution
Jiazhao Li | Zhuofeng Wu | Wei Ping | Chaowei Xiao | V.G.Vinod Vydiswaran
Findings of the Association for Computational Linguistics: ACL 2023

Textual backdoor attack, as a novel attack model, has been shown to be effective in adding a backdoor to the model during training. Defending against such backdoor attacks has become urgent and important. In this paper, we propose AttDef, an efficient attribution-based pipeline to defend against two insertion-based poisoning attacks, BadNL and InSent. Specifically, we regard the tokens with larger attribution scores as potential triggers since larger attribution words contribute more to the false prediction results and therefore are more likely to be poison triggers. Additionally, we further utilize an external pre-trained language model to distinguish whether input is poisoned or not. We show that our proposed method can generalize sufficiently well in two common attack scenarios (poisoning training data and testing data), which consistently improves previous methods. For instance, AttDef can successfully mitigate both attacks with an average accuracy of 79.97% (56.59% up) and 48.34% (3.99% up) under pre-training and post-training attack defense respectively, achieving the new state-of-the-art performance on prediction recovery over four benchmark datasets.

2020

pdf bib
PharmMT: A Neural Machine Translation Approach to Simplify Prescription Directions
Jiazhao Li | Corey Lester | Xinyan Zhao | Yuting Ding | Yun Jiang | V.G.Vinod Vydiswaran
Findings of the Association for Computational Linguistics: EMNLP 2020

The language used by physicians and health professionals in prescription directions includes medical jargon and implicit directives and causes much confusion among patients. Human intervention to simplify the language at the pharmacies may introduce additional errors that can lead to potentially severe health outcomes. We propose a novel machine translation-based approach, PharmMT, to automatically and reliably simplify prescription directions into patient-friendly language, thereby significantly reducing pharmacist workload. We evaluate the proposed approach over a dataset consisting of over 530K prescriptions obtained from a large mail-order pharmacy. The end-to-end system achieves a BLEU score of 60.27 against the reference directions generated by pharmacists, a 39.6% relative improvement over the rule-based normalization. Pharmacists judged 94.3% of the simplified directions as usable as-is or with minimal changes. This work demonstrates the feasibility of a machine translation-based tool for simplifying prescription directions in real-life.