Jiazheng Li


pdf bib
NarrativePlay: Interactive Narrative Understanding
Runcong Zhao | Wenjia Zhang | Jiazheng Li | Lixing Zhu | Yanran Li | Yulan He | Lin Gui
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

In this paper, we introduce NarrativePlay, a novel system that allows users to role-play a fictional character and interact with other characters in narratives in an immersive environment. We leverage Large Language Models (LLMs) to generate human-like responses, guided by personality traits extracted from narratives. The system incorporates auto-generated visual display of narrative settings, character portraits, and character speech, greatly enhancing the user experience. Our approach eschews predefined sandboxes, focusing instead on main storyline events from the perspective of a user-selected character. NarrativePlay has been evaluated on two types of narratives, detective and adventure stories, where users can either explore the world or increase affinity with other characters through conversations.


pdf bib
NapSS: Paragraph-level Medical Text Simplification via Narrative Prompting and Sentence-matching Summarization
Junru Lu | Jiazheng Li | Byron Wallace | Yulan He | Gabriele Pergola
Findings of the Association for Computational Linguistics: EACL 2023

Accessing medical literature is difficult for laypeople as the content is written for specialists and contains medical jargon. Automated text simplification methods offer a potential means to address this issue. In this work, we propose a summarize-then-simplify two-stage strategy, which we call NapSS, identifying the relevant content to simplify while ensuring that the original narrative flow is preserved. In this approach, we first generate reference summaries via sentence matching between the original and the simplified abstracts. These summaries are then used to train an extractive summarizer, learning the most relevant content to be simplified. Then, to ensure the narrative consistency of the simplified text, we synthesize auxiliary narrative prompts combining key phrases derived from the syntactical analyses of the original text. Our model achieves results significantly better than the seq2seq baseline on an English medical corpus, yielding 3% 4% absolute improvements in terms of lexical similarity, and providing a further 1.1% improvement of SARI score when combined with the baseline. We also highlight shortcomings of existing evaluation methods, and introduce new metrics that take into account both lexical and high-level semantic similarity. A human evaluation conducted on a random sample of the test set further establishes the effectiveness of the proposed approach. Codes and models are released here: https://github.com/LuJunru/NapSS.

pdf bib
Distilling ChatGPT for Explainable Automated Student Answer Assessment
Jiazheng Li | Lin Gui | Yuxiang Zhou | David West | Cesare Aloisi | Yulan He
Findings of the Association for Computational Linguistics: EMNLP 2023

Providing explainable and faithful feedback is crucial for automated student answer assessment. In this paper, we introduce a novel framework that explores using ChatGPT, a cutting-edge large language model, for the concurrent tasks of student answer scoring and rationale generation. We identify the appropriate instructions by prompting ChatGPT with different templates to collect the rationales, where inconsistent rationales are refined to align with marking standards. The refined ChatGPT outputs enable us to fine-tune a smaller language model that simultaneously assesses student answers and provides rationales. Extensive experiments on the benchmark dataset show that the proposed method improves the overall QWK score by 11% compared to ChatGPT. Furthermore, our thorough analysis and human evaluation demonstrate that the rationales generated by our proposed method are comparable to those of ChatGPT. Our approach provides a viable solution to achieve explainable automated assessment in education


pdf bib
PHEE: A Dataset for Pharmacovigilance Event Extraction from Text
Zhaoyue Sun | Jiazheng Li | Gabriele Pergola | Byron Wallace | Bino John | Nigel Greene | Joseph Kim | Yulan He
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

The primary goal of drug safety researchers and regulators is to promptly identify adverse drug reactions. Doing so may in turn prevent or reduce the harm to patients and ultimately improve public health. Evaluating and monitoring drug safety (i.e., pharmacovigilance) involves analyzing an ever growing collection of spontaneous reports from health professionals, physicians, and pharmacists, and information voluntarily submitted by patients. In this scenario, facilitating analysis of such reports via automation has the potential to rapidly identify safety signals. Unfortunately, public resources for developing natural language models for this task are scant. We present PHEE, a novel dataset for pharmacovigilance comprising over 5000 annotated events from medical case reports and biomedical literature, making it the largest such public dataset to date. We describe the hierarchical event schema designed to provide coarse and fine-grained information about patients’ demographics, treatments and (side) effects. Along with the discussion of the dataset, we present a thorough experimental evaluation of current state-of-the-art approaches for biomedical event extraction, point out their limitations, and highlight open challenges to foster future research in this area.


pdf bib
Exploring the Efficacy of Automatically Generated Counterfactuals for Sentiment Analysis
Linyi Yang | Jiazheng Li | Padraig Cunningham | Yue Zhang | Barry Smyth | Ruihai Dong
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

While state-of-the-art NLP models have been achieving the excellent performance of a wide range of tasks in recent years, important questions are being raised about their robustness and their underlying sensitivity to systematic biases that may exist in their training and test data. Such issues come to be manifest in performance problems when faced with out-of-distribution data in the field. One recent solution has been to use counterfactually augmented datasets in order to reduce any reliance on spurious patterns that may exist in the original data. Producing high-quality augmented data can be costly and time-consuming as it usually needs to involve human feedback and crowdsourcing efforts. In this work, we propose an alternative by describing and evaluating an approach to automatically generating counterfactual data for the purpose of data augmentation and explanation. A comprehensive evaluation on several different datasets and using a variety of state-of-the-art benchmarks demonstrate how our approach can achieve significant improvements in model performance when compared to models training on the original data and even when compared to models trained with the benefit of human-generated augmented data.