Jie Guo
2023
Support or Refute: Analyzing the Stance of Evidence to Detect Out-of-Context Mis- and Disinformation
Xin Yuan
|
Jie Guo
|
Weidong Qiu
|
Zheng Huang
|
Shujun Li
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Mis- and disinformation online have become a major societal problem as major sources of online harms of different kinds. One common form of mis- and disinformation is out-of-context (OOC) information, where different pieces of information are falsely associated, e.g., a real image combined with a false textual caption or a misleading textual description. Although some past studies have attempted to defend against OOC mis- and disinformation through external evidence, they tend to disregard the role of different pieces of evidence with different stances. Motivated by the intuition that the stance of evidence represents a bias towards different detection results, we propose a stance extraction network (SEN) that can extract the stances of different pieces of multi-modal evidence in a unified framework. Moreover, we introduce a support-refutation score calculated based on the co-occurrence relations of named entities into the textual SEN. Extensive experiments on a public large-scale dataset demonstrated that our proposed method outperformed the state-of-the-art baselines, with the best model achieving a performance gain of 3.2% in accuracy.
2020
Attention-Based Graph Neural Network with Global Context Awareness for Document Understanding
Yuan Hua
|
Zheng Huang
|
Jie Guo
|
Weidong Qiu
Proceedings of the 19th Chinese National Conference on Computational Linguistics
Information extraction from documents such as receipts or invoices is a fundamental and crucial step for office automation. Many approaches focus on extracting entities and relationships from plain texts, however, when it comes to document images, such demand becomes quite challenging since visual and layout information are also of great significance to help tackle this problem. In this work, we propose the attention-based graph neural network to combine textual and visual information from document images. Moreover, the global node is introduced in our graph construction algorithm which is used as a virtual hub to collect the information from all the nodes and edges to help improve the performance. Extensive experiments on real-world datasets show that our method outperforms baseline methods by significant margins.