Clinicians often rely on data engineers to retrieve complex patient information from electronic health record (EHR) systems, a process that is both inefficient and time-consuming. We propose EHRAgent, a large language model (LLM) agent empowered with accumulative domain knowledge and robust coding capability. EHRAgent enables autonomous code generation and execution to facilitate clinicians in directly interacting with EHRs using natural language. Specifically, we formulate a multi-tabular reasoning task based on EHRs as a tool-use planning process, efficiently decomposing a complex task into a sequence of manageable actions with external toolsets. We first inject relevant medical information to enable EHRAgent to effectively reason about the given query, identifying and extracting the required records from the appropriate tables. By integrating interactive coding and execution feedback, EHRAgent then effectively learns from error messages and iteratively improves its originally generated code. Experiments on three real-world EHR datasets show that EHRAgent outperforms the strongest baseline by up to 29.6% in success rate, verifying its strong capacity to tackle complex clinical tasks with minimal demonstrations.
We present PATRON, a prompt-based data selection method for pre-trained language model fine-tuning under cold-start scenarios, i.e., no initial labeled data are available. In PATRON, we design (1) a prompt-based uncertainty propagation approach to estimate the importance of data points and (2) a partition-then-rewrite (PTR) strategy to promote sample diversity when querying for annotations. Experiments on six text classification datasets show that PATRON outperforms the strongest cold-start data selection baselines by up to 6.9%. Besides, with 128 labels only, PATRON achieves 91.0% and 92.1% of the fully supervised performance based on vanilla fine-tuning and prompt-based learning respectively. Our implementation of PATRON will be published upon acceptance.
To obtain a large amount of training labels inexpensively, researchers have recently adopted the weak supervision (WS) paradigm, which leverages labeling rules to synthesize training labels rather than using individual annotations to achieve competitive results for natural language processing (NLP) tasks. However, data imbalance is often overlooked in applying the WS paradigm, despite being a common issue in a variety of NLP tasks. To address this challenge, we propose Adaptive Ranking-based Sample Selection (ARS2), a model-agnostic framework to alleviate the data imbalance issue in the WS paradigm. Specifically, it calculates a probabilistic margin score based on the output of the current model to measure and rank the cleanliness of each data point. Then, the ranked data are sampled based on both class-wise and rule-aware ranking. In particular, the two sample strategies corresponds to our motivations: (1) to train the model with balanced data batches to reduce the data imbalance issue and (2) to exploit the expertise of each labeling rule for collecting clean samples. Experiments on four text classification datasets with four different imbalance ratios show that ARS2 outperformed the state-of-the-art imbalanced learning and WS methods, leading to a 2%-57.8% improvement on their F1-score.
Although fine-tuning pre-trained language models (PLMs) renders strong performance in many NLP tasks, it relies on excessive labeled data. Recently, researchers have resorted to active fine-tuning for enhancing the label efficiency of PLM fine-tuning, but existing methods of this type usually ignore the potential of unlabeled data. We develop AcTune, a new framework that improves the label efficiency of active PLM fine-tuning by unleashing the power of unlabeled data via self-training. AcTune switches between data annotation and model self-training based on uncertainty: the unlabeled samples of high-uncertainty are selected for annotation, while the ones from low-uncertainty regions are used for model self-training. Additionally, we design (1) a region-aware sampling strategy to avoid redundant samples when querying annotations and (2) a momentum-based memory bank to dynamically aggregate the model’s pseudo labels to suppress label noise in self-training. Experiments on 6 text classification datasets show that AcTune outperforms the strongest active learning and self-training baselines and improves the label efficiency of PLM fine-tuning by 56.2% on average. Our implementation is available at
https://github.com/yueyu1030/actune.