Jifan Yu


2024

pdf bib
WaterBench: Towards Holistic Evaluation of Watermarks for Large Language Models
Shangqing Tu | Yuliang Sun | Yushi Bai | Jifan Yu | Lei Hou | Juanzi Li
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

To mitigate the potential misuse of large language models (LLMs), recent research has developed watermarking algorithms, which restrict the generation process to leave an invisible trace for watermark detection. Due to the two-stage nature of the task, most studies evaluate the generation and detection separately, thereby presenting a challenge in unbiased, thorough, and applicable evaluations. In this paper, we introduce WaterBench, the first comprehensive benchmark for LLM watermarks, in which we design three crucial factors: (1) For benchmarking procedure, to ensure an apples-to-apples comparison, we first adjust each watermarking method’s hyper-parameter to reach the same watermarking strength, then jointly evaluate their generation and detection performance. (2) For task selection, we diversify the input and output length to form a five-category taxonomy, covering 9 tasks. (3) For evaluation metric, we adopt the GPT4-Judge for automatically evaluating the decline of instruction-following abilities after watermarking. We evaluate 4 open-source watermarks on 2 LLMs under 2 watermarking strengths and observe the common struggles for current methods on maintaining the generation quality. The code and data are available at https://github.com/THU-KEG/WaterBench.

pdf bib
Transferable and Efficient Non-Factual Content Detection via Probe Training with Offline Consistency Checking
Xiaokang Zhang | Zijun Yao | Jing Zhang | Kaifeng Yun | Jifan Yu | Juanzi Li | Jie Tang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper proposes PiNose, which trains a probing model on offline self-consistency checking results, thereby circumventing the need for human-annotated data and achieving transferability across diverse data distributions. As the consistency check process is offline, PiNose reduces the computational burden of generating multiple responses by online consistency verification. Additionally, it examines various aspects of internal states prior to response decoding, contributing to more effective detection of factual inaccuracies. Experiment results on both factuality detection and question answering benchmarks show that PiNose achieves surpassing results than existing factuality detection methods.

pdf bib
LM-Interview: An Easy-to-use Smart Interviewer System via Knowledge-guided Language Model Exploitation
Hanming Li | Jifan Yu | Ruimiao Li | Zhanxin Hao | Yan Xuan | Jiaxi Yuan | Bin Xu | Juanzi Li | Zhiyuan Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Semi-structured interviews are a crucial method of data acquisition in qualitative research. Typically controlled by the interviewer, the process progresses through a question-and-answer format, aimed at eliciting information from the interviewee. However, interviews are highly time-consuming and demand considerable experience of the interviewers, which greatly limits the efficiency and feasibility of data collection. Therefore, we introduce LM-Interview, a novel system designed to automate the process of preparing, conducting and analyzing semi-structured interviews. Experimental results demonstrate that LM-interview achieves performance comparable to that of skilled human interviewers.

pdf bib
CharacterGLM: Customizing Social Characters with Large Language Models
Jinfeng Zhou | Zhuang Chen | Dazhen Wan | Bosi Wen | Yi Song | Jifan Yu | Yongkang Huang | Pei Ke | Guanqun Bi | Libiao Peng | JiaMing Yang | Xiyao Xiao | Sahand Sabour | Xiaohan Zhang | Wenjing Hou | Yijia Zhang | Yuxiao Dong | Hongning Wang | Jie Tang | Minlie Huang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track

Character-based dialogue (CharacterDial) has become essential in the industry (e.g., Character.AI), enabling users to freely customize social characters for social interactions. However, the generalizability and adaptability across various conversational scenarios inherent in customizing social characters still lack public industrial solutions. To address these challenges, by dissecting well-rounded social characters composed of both inherent social profiles and external social behaviors, we manually collect a large-scale Chinese corpus featuring characters with diverse categories and behaviors, and develop CharacterGLM models alongside well-designed refinement methods. Extensive experiments show that CharacterGLM outperforms most popular open- and closed-source LLMs and performs comparably to GPT-4. We will release our data and models for local development and deployment.

pdf bib
A Cause-Effect Look at Alleviating Hallucination of Knowledge-grounded Dialogue Generation
Jifan Yu | Xiaohan Zhang | Yifan Xu | Xuanyu Lei | Zijun Yao | Jing Zhang | Lei Hou | Juanzi Li
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Empowered by the large-scale pretrained language models, existing dialogue systems have demonstrated impressive performance conducting fluent and natural-sounding conversations. However, they are still plagued by the <b>hallucination</b> problem, causing unpredictable factual errors in the generated responses. Recently, knowledge-grounded dialogue generation models, that intentionally invoke external knowledge resources to more informative responses, are also proven to be effective in reducing hallucination. Following the idea of getting high-quality knowledge, a few efforts have achieved pretty good performance on this issue. As some inevitable knowledge noises may also lead to hallucinations, it is emergent to investigate the reason and future directions for building noise-tolerant methods in KGD tasks. In this paper, we analyze the causal story behind this problem with counterfactual reasoning methods. Based on the causal effect analysis, we propose a possible solution for alleviating the hallucination in KGD by exploiting the dialogue-knowledge interaction. Experimental results of our example implementation show that this method can reduce hallucination without disrupting other dialogue performance, while keeping adaptive to different generation models. We hope our efforts can support and call for more attention to developing lightweight techniques towards robust and trusty dialogue systems.

pdf bib
Evaluating Generative Language Models in Information Extraction as Subjective Question Correction
Yuchen Fan | Yantao Liu | Zijun Yao | Jifan Yu | Lei Hou | Juanzi Li
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Modern Large Language Models (LLMs) have showcased remarkable prowess in various tasks necessitating sophisticated cognitive behaviors. Nevertheless, a paradoxical performance discrepancy is observed, where these models underperform in seemingly elementary tasks like relation extraction and event extraction due to two issues in conventional evaluation. (1) The imprecision of existing evaluation metrics that struggle to effectively gauge semantic consistency between model outputs and ground truth, and (2) The inherent incompleteness of evaluation benchmarks, primarily due to restrictive human annotation schemas, resulting in underestimated LLM performances. Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score. This method innovatively utilizes LLMs, fine-tuned through subjective question correction data, to refine matching between model outputs and golden labels. Additionally, by incorporating a Natural Language Inference (NLI) model, SQC-Score enriches golden labels, addressing benchmark incompleteness by acknowledging correct yet previously omitted answers. Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics. Utilizing SQC-Score, we conduct a comprehensive evaluation of the state-of-the-art LLMs and provide insights for future research for information extraction. Dataset and associated codes can be accessed at our <a href=https://github.com/THU-KEG/SQC-Score> GitHub repository </a>.

pdf bib
Untangle the KNOT: Interweaving Conflicting Knowledge and Reasoning Skills in Large Language Models
Yantao Liu | Zijun Yao | Xin Lv | Yuchen Fan | Shulin Cao | Jifan Yu | Lei Hou | Juanzi Li
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Providing knowledge documents for large language models (LLMs) has emerged as a promising solution to update the static knowledge inherent in their parameters. However, knowledge in the document may conflict with the memory of LLMs due to outdated or incorrect knowledge in the LLMs’ parameters. This leads to the necessity of examining the capability of LLMs to assimilate supplemental external knowledge that conflicts with their memory. While previous studies have explained to what extent LLMs extract conflicting knowledge from the provided text, they neglect the necessity to <b>reason</b> with conflicting knowledge. Furthermore, there lack a detailed analysis on strategies to enable LLMs to resolve conflicting knowledge via prompting, decoding strategy, and supervised fine-tuning. To address these limitations, we construct a new dataset, dubbed KNOT, for knowledge conflict resolution examination in the form of question answering. KNOT facilitates in-depth analysis by dividing reasoning with conflicting knowledge into three levels: (1) Direct Extraction, which directly extracts conflicting knowledge to answer questions. (2) Explicit Reasoning, which reasons with conflicting knowledge when the reasoning path is explicitly provided in the question. (3) Implicit Reasoning, where reasoning with conflicting knowledge requires LLMs to infer the reasoning path independently to answer questions. We also conduct extensive experiments on KNOT to establish empirical guidelines for LLMs to utilize conflicting knowledge in complex circumstances. Dataset and associated codes can be accessed at our <a href=https://github.com/THU-KEG/KNOT>GitHub repository</a> .

2023

pdf bib
Distantly Supervised Course Concept Extraction in MOOCs with Academic Discipline
Mengying Lu | Yuquan Wang | Jifan Yu | Yexing Du | Lei Hou | Juanzi Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

With the rapid growth of Massive Open Online Courses (MOOCs), it is expensive and time-consuming to extract high-quality knowledgeable concepts taught in the course by human effort to help learners grasp the essence of the course. In this paper, we propose to automatically extract course concepts using distant supervision to eliminate the heavy work of human annotations, which generates labels by matching them with an easily accessed dictionary. However, this matching process suffers from severe noisy and incomplete annotations because of the limited dictionary and diverse MOOCs. To tackle these challenges, we present a novel three-stage framework DS-MOCE, which leverages the power of pre-trained language models explicitly and implicitly and employs discipline-embedding models with a self-train strategy based on label generation refinement across different domains. We also provide an expert-labeled dataset spanning 20 academic disciplines. Experimental results demonstrate the superiority of DS-MOCE over the state-of-the-art distantly supervised methods (with 7% absolute F1 score improvement). Code and data are now available at https://github.com/THU-KEG/MOOC-NER.

pdf bib
VisKoP: Visual Knowledge oriented Programming for Interactive Knowledge Base Question Answering
Zijun Yao | Yuanyong Chen | Xin Lv | Shulin Cao | Amy Xin | Jifan Yu | Hailong Jin | Jianjun Xu | Peng Zhang | Lei Hou | Juanzi Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

We present Visual Knowledge oriented Programming platform (VisKoP), a knowledge base question answering (KBQA) system that integrates human into the loop to edit and debug the knowledge base (KB) queries. VisKoP not only provides a neural program induction module, which converts natural language questions into knowledge oriented program language (KoPL), but also maps KoPL programs into graphical elements. KoPL programs can be edited with simple graphical operators, such as ”dragging” to add knowledge operators and ”slot filling” to designate operator arguments. Moreover, VisKoP provides auto-completion for its knowledge base schema and users can easily debug the KoPL program by checking its intermediate results. To facilitate the practical KBQA on a million-entity-level KB, we design a highly efficient KoPL execution engine for the back-end. Experiment results show that VisKoP is highly efficient and user interaction can fix a large portion of wrong KoPL programs to acquire the correct answer. The VisKoP online demo, highly efficient KoPL engine, and screencast video are now publicly available.

pdf bib
Preserving Knowledge Invariance: Rethinking Robustness Evaluation of Open Information Extraction
Ji Qi | Chuchun Zhang | Xiaozhi Wang | Kaisheng Zeng | Jifan Yu | Jinxin Liu | Lei Hou | Juanzi Li | Xu Bin
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The robustness to distribution changes ensures that NLP models can be successfully applied in the realistic world, especially for information extraction tasks. However, most prior evaluation benchmarks have been devoted to validating pairwise matching correctness, ignoring the crucial validation of robustness. In this paper, we present the first benchmark that simulates the evaluation of open information extraction models in the real world, where the syntactic and expressive distributions under the same knowledge meaning may drift variously. We design and annotate a large-scale testbed in which each example is a knowledge-invariant clique that consists of sentences with structured knowledge of the same meaning but with different syntactic and expressive forms. By further elaborating the robustness metric, a model is judged to be robust if its performance is consistently accurate on the overall cliques. We perform experiments on typical models published in the last decade as well as a representative large language model, and the results show that the existing successful models exhibit a frustrating degradation, with a maximum drop of 23.43 F1 score. Our resources and code will be publicly available.

pdf bib
Learn to Not Link: Exploring NIL Prediction in Entity Linking
Fangwei Zhu | Jifan Yu | Hailong Jin | Lei Hou | Juanzi Li | Zhifang Sui
Findings of the Association for Computational Linguistics: ACL 2023

Entity linking models have achieved significant success via utilizing pretrained language models to capture semantic features. However, the NIL prediction problem, which aims to identify mentions without a corresponding entity in the knowledge base, has received insufficient attention. We categorize mentions linking to NIL into Missing Entity and Non-Entity Phrase, and propose an entity linking dataset NEL that focuses on the NIL prediction problem.NEL takes ambiguous entities as seeds, collects relevant mention context in the Wikipedia corpus, and ensures the presence of mentions linking to NIL by human annotation and entity masking. We conduct a series of experiments with the widely used bi-encoder and cross-encoder entity linking models, results show that both types of NIL mentions in training data have a significant influence on the accuracy of NIL prediction. Our code and dataset can be accessed at https://github.com/solitaryzero/NIL_EL.

pdf bib
KoRC: Knowledge Oriented Reading Comprehension Benchmark for Deep Text Understanding
Zijun Yao | Yantao Liu | Xin Lv | Shulin Cao | Jifan Yu | Juanzi Li | Lei Hou
Findings of the Association for Computational Linguistics: ACL 2023

Deep text understanding, which requires the connections between a given document and prior knowledge beyond its text, has been highlighted by many benchmarks in recent years. However, these benchmarks have encountered two major limitations. On the one hand, most of them require human annotation of knowledge, which leads to limited knowledge coverage. On the other hand, they usually use choices or spans in the texts as the answers, which results in narrow answer space. To overcome these limitations, we build a new challenging benchmark named KoRC in this paper. Compared with previous benchmarks, KoRC has two advantages, i.e., broad knowledge coverage and flexible answer format. Specifically, we utilize massive knowledge bases to guide annotators or large language models (LLMs) to construct knowledgable questions. Moreover, we use labels in knowledge bases rather than spans or choices as the final answers. We test state-of-the-art models on KoRC and the experimental results show that the strongest baseline only achieves 68.3% and 30.0% F1 measure in the IID and OOD test set, respectively. These results indicate that deep text understanding is still an unsolved challenge. We will release our dataset and baseline methods upon acceptance.

pdf bib
Exploring the Cognitive Knowledge Structure of Large Language Models: An Educational Diagnostic Assessment Approach
Zheyuan Zhang | Jifan Yu | Juanzi Li | Lei Hou
Findings of the Association for Computational Linguistics: EMNLP 2023

Large Language Models (LLMs) have not only exhibited exceptional performance across various tasks, but also demonstrated sparks of intelligence. Recent studies have focused on assessing their capabilities on human exams and revealed their impressive competence in different domains. However, cognitive research on the overall knowledge structure of LLMs is still lacking. In this paper, based on educational diagnostic assessment method, we conduct an evaluation using MoocRadar, a meticulously annotated human test dataset based on Bloom Taxonomy. We aim to reveal the knowledge structures of LLMs and gain insights of their cognitive capabilities. This research emphasizes the significance of investigating LLMs’ knowledge and understanding the disparate cognitive patterns of LLMs. By shedding light on models’ knowledge, researchers can advance development and utilization of LLMs in a more informed and effective manner.

pdf bib
FFAEval: Evaluating Dialogue System via Free-For-All Ranking
Zeyao Ma | Zijun Yao | Jing Zhang | Jifan Yu | Xiaohan Zhang | Juanzi Li | Jie Tang
Findings of the Association for Computational Linguistics: EMNLP 2023

Evaluating open-domain dialogue systems is currently an open question. Automatic evaluation metrics have shown poor correlation with human assessment in dialogue generation tasks. Human evaluation, which involves annotators for multi-dimension scoring, is trustworthy but time-consuming. In this work, we propose FFAEval, a reliable and efficient human evaluation framework using Free-For-All ranking approach. By sharing the dialogue history, the framework enables annotators to converse with multiple dialogue systems simultaneously in a single-blind, multi-turn manner. The subsequent free-for-all allows annotators to select the most favourable model in each turn from among all the participating dialogue systems. The final performance of each model is represented by calculating the TrueSkill score derived from the free-for-all competition. Our empirical study on English and Chinese dialogue systems demonstrates that FFAEval achieves a strong correlation with score-based human assessment compared to existing evaluation methods. We further prove the efficiency and stability of our framework in additional experiments. The source code and data are available on Github.

2022

pdf bib
Subgraph Retrieval Enhanced Model for Multi-hop Knowledge Base Question Answering
Jing Zhang | Xiaokang Zhang | Jifan Yu | Jian Tang | Jie Tang | Cuiping Li | Hong Chen
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent works on knowledge base question answering (KBQA) retrieve subgraphs for easier reasoning. The desired subgraph is crucial as a small one may exclude the answer but a large one might introduce more noises. However, the existing retrieval is either heuristic or interwoven with the reasoning, causing reasoning on the partial subgraphs, which increases the reasoning bias when the intermediate supervision is missing. This paper proposes a trainable subgraph retriever (SR) decoupled from the subsequent reasoning process, which enables a plug-and-play framework to enhance any subgraph-oriented KBQA model. Extensive experiments demonstrate SR achieves significantly better retrieval and QA performance than existing retrieval methods. Via weakly supervised pre-training as well as the end-to-end fine-tuning, SR achieves new state-of-the-art performance when combined with NSM (He et al., 2021), a subgraph-oriented reasoner, for embedding-based KBQA methods. Codes and datasets are available online (https://github.com/RUCKBReasoning/SubgraphRetrievalKBQA)

pdf bib
Program Transfer for Answering Complex Questions over Knowledge Bases
Shulin Cao | Jiaxin Shi | Zijun Yao | Xin Lv | Jifan Yu | Lei Hou | Juanzi Li | Zhiyuan Liu | Jinghui Xiao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Program induction for answering complex questions over knowledge bases (KBs) aims to decompose a question into a multi-step program, whose execution against the KB produces the final answer. Learning to induce programs relies on a large number of parallel question-program pairs for the given KB. However, for most KBs, the gold program annotations are usually lacking, making learning difficult. In this paper, we propose the approach of program transfer, which aims to leverage the valuable program annotations on the rich-resourced KBs as external supervision signals to aid program induction for the low-resourced KBs that lack program annotations. For program transfer, we design a novel two-stage parsing framework with an efficient ontology-guided pruning strategy. First, a sketch parser translates the question into a high-level program sketch, which is the composition of functions. Second, given the question and sketch, an argument parser searches the detailed arguments from the KB for functions. During the searching, we incorporate the KB ontology to prune the search space. The experiments on ComplexWebQuestions and WebQuestionSP show that our method outperforms SOTA methods significantly, demonstrating the effectiveness of program transfer and our framework. Our codes and datasets can be obtained from https://github.com/THU-KEG/ProgramTransfer.

pdf bib
HOSMEL: A Hot-Swappable Modularized Entity Linking Toolkit for Chinese
Daniel Zhang-li | Jing Zhang | Jifan Yu | Xiaokang Zhang | Peng Zhang | Jie Tang | Juanzi Li
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

We investigate the usage of entity linking (EL)in downstream tasks and present the first modularized EL toolkit for easy task adaptation. Different from the existing EL methods that dealwith all the features simultaneously, we modularize the whole model into separate parts witheach feature. This decoupled design enablesflexibly adding new features without retraining the whole model as well as flow visualization with better interpretability of the ELresult. We release the corresponding toolkit,HOSMEL, for Chinese, with three flexible usage modes, a live demo, and a demonstrationvideo. Experiments on two benchmarks forthe question answering task demonstrate thatHOSMEL achieves much less time and spaceconsumption as well as significantly better accuracy performance compared with existingSOTA EL methods. We hope the release ofHOSMEL will call for more attention to studyEL for downstream tasks in non-English languages.

pdf bib
UPER: Boosting Multi-Document Summarization with an Unsupervised Prompt-based Extractor
Shangqing Tu | Jifan Yu | Fangwei Zhu | Juanzi Li | Lei Hou | Jian-Yun Nie
Proceedings of the 29th International Conference on Computational Linguistics

Multi-Document Summarization (MDS) commonly employs the 2-stage extract-then-abstract paradigm, which first extracts a relatively short meta-document, then feeds it into the deep neural networks to generate an abstract. Previous work usually takes the ROUGE score as the label for training a scoring model to evaluate source documents. However, the trained scoring model is prone to under-fitting for low-resource settings, as it relies on the training data. To extract documents effectively, we construct prompting templates that invoke the underlying knowledge in Pre-trained Language Model (PLM) to calculate the document and keyword’s perplexity, which can assess the document’s semantic salience. Our unsupervised approach can be applied as a plug-in to boost other metrics for evaluating a document’s salience, thus improving the subsequent abstract generation. We get positive results on 2 MDS datasets, 2 data settings, and 2 abstractive backbone models, showing our method’s effectiveness. Our code is available at https://github.com/THU-KEG/UPER

2021

pdf bib
Interpretable and Low-Resource Entity Matching via Decoupling Feature Learning from Decision Making
Zijun Yao | Chengjiang Li | Tiansi Dong | Xin Lv | Jifan Yu | Lei Hou | Juanzi Li | Yichi Zhang | Zelin Dai
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Entity Matching (EM) aims at recognizing entity records that denote the same real-world object. Neural EM models learn vector representation of entity descriptions and match entities end-to-end. Though robust, these methods require many annotated resources for training, and lack of interpretability. In this paper, we propose a novel EM framework that consists of Heterogeneous Information Fusion (HIF) and Key Attribute Tree (KAT) Induction to decouple feature representation from matching decision. Using self-supervised learning and mask mechanism in pre-trained language modeling, HIF learns the embeddings of noisy attribute values by inter-attribute attention with unlabeled data. Using a set of comparison features and a limited amount of annotated data, KAT Induction learns an efficient decision tree that can be interpreted by generating entity matching rules whose structure is advocated by domain experts. Experiments on 6 public datasets and 3 industrial datasets show that our method is highly efficient and outperforms SOTA EM models in most cases. We will release the codes upon acceptance.

2020

pdf bib
ExpanRL: Hierarchical Reinforcement Learning for Course Concept Expansion in MOOCs
Jifan Yu | Chenyu Wang | Gan Luo | Lei Hou | Juanzi Li | Jie Tang | Minlie Huang | Zhiyuan Liu
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Within the prosperity of Massive Open Online Courses (MOOCs), the education applications that automatically provide extracurricular knowledge for MOOC users become rising research topics. However, MOOC courses’ diversity and rapid updates make it more challenging to find suitable new knowledge for students. In this paper, we present ExpanRL, an end-to-end hierarchical reinforcement learning (HRL) model for concept expansion in MOOCs. Employing a two-level HRL mechanism of seed selection and concept expansion, ExpanRL is more feasible to adjust the expansion strategy to find new concepts based on the students’ feedback on expansion results. Our experiments on nine novel datasets from real MOOCs show that ExpanRL achieves significant improvements over existing methods and maintain competitive performance under different settings.

pdf bib
MOOCCube: A Large-scale Data Repository for NLP Applications in MOOCs
Jifan Yu | Gan Luo | Tong Xiao | Qingyang Zhong | Yuquan Wang | Wenzheng Feng | Junyi Luo | Chenyu Wang | Lei Hou | Juanzi Li | Zhiyuan Liu | Jie Tang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The prosperity of Massive Open Online Courses (MOOCs) provides fodder for many NLP and AI research for education applications, e.g., course concept extraction, prerequisite relation discovery, etc. However, the publicly available datasets of MOOC are limited in size with few types of data, which hinders advanced models and novel attempts in related topics. Therefore, we present MOOCCube, a large-scale data repository of over 700 MOOC courses, 100k concepts, 8 million student behaviors with an external resource. Moreover, we conduct a prerequisite discovery task as an example application to show the potential of MOOCCube in facilitating relevant research. The data repository is now available at http://moocdata.cn/data/MOOCCube.

2019

pdf bib
Course Concept Expansion in MOOCs with External Knowledge and Interactive Game
Jifan Yu | Chenyu Wang | Gan Luo | Lei Hou | Juanzi Li | Zhiyuan Liu | Jie Tang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

As Massive Open Online Courses (MOOCs) become increasingly popular, it is promising to automatically provide extracurricular knowledge for MOOC users. Suffering from semantic drifts and lack of knowledge guidance, existing methods can not effectively expand course concepts in complex MOOC environments. In this paper, we first build a novel boundary during searching for new concepts via external knowledge base and then utilize heterogeneous features to verify the high-quality results. In addition, to involve human efforts in our model, we design an interactive optimization mechanism based on a game. Our experiments on the four datasets from Coursera and XuetangX show that the proposed method achieves significant improvements(+0.19 by MAP) over existing methods.