We propose emotion2vec, a universal speech emotion representation model. emotion2vec is pre-trained on open-source unlabeled emotion data through self-supervised online distillation, combining utterance-level loss and frame-level loss during pre-training. emotion2vec outperforms state-of-the-art pre-trained universal models and emotion specialist models by only training linear layers for the speech emotion recognition task on the mainstream IEMOCAP dataset. In addition, emotion2vec shows consistent improvements among 10 different languages of speech emotion recognition datasets. emotion2vec also shows excellent results on other emotion tasks, such as song emotion recognition, emotion prediction in conversation, and sentiment analysis. Comparison experiments, ablation experiments, and visualization comprehensively demonstrate the universal capability of the proposed emotion2vec. To the best of our knowledge, emotion2vec is the first universal representation model in various emotion-related tasks, filling a gap in the field.
Chain-of-thought (CoT) has impressively unlocked the reasoning potential of large language models (LLMs). Yet, it falls short when tackling problems that require multiple reasoning steps. This limitation arises from the complex nature of multi-step reasoning processes: later stages often depend not only on the immediately preceding step, but also on the results from several steps earlier. Such complexities indicate the reasoning process is naturally a graph. The almost linear structure of CoT, however, struggles to capture this complex reasoning graph. To address this challenge, we propose Residual Connection Prompting (ResPrompt), a new prompting strategy that advances multi-step reasoning in LLMs. The core of our idea is to reconstruct the reasoning graph within prompts. We achieve this by integrating necessary connections–links present in reasoning graph but missing in the linear CoT flow–into the prompts. Termed “residual connections”, these links can transform linear CoT into the complex reasoning graphs that multi-step problems entail. On benchmarks across math, sequential, and commonsense domains, ResPrompt demonstrates clear improvements in multi-step reasoning compared with CoT. Through extensive ablation studies and analyses, we pinpoint how to effectively build residual connections and also identify situations where it might be unnecessary.
For task-oriented dialog systems to be maximally useful, it must be able to process conversations in a way that is (1) generalizable with a small number of training examples for new task domains, and (2) robust to user input in various styles, modalities, or domains. In pursuit of these goals, we introduce the RADDLE benchmark, a collection of corpora and tools for evaluating the performance of models across a diverse set of domains. By including tasks with limited training data, RADDLE is designed to favor and encourage models with a strong generalization ability. RADDLE also includes a diagnostic checklist that facilitates detailed robustness analysis in aspects such as language variations, speech errors, unseen entities, and out-of-domain utterances. We evaluate recent state-of-the-art systems based on pre-training and fine-tuning, and find that grounded pre-training on heterogeneous dialog corpora performs better than training a separate model per domain. Adversarial training is also proposed to improve model robustness against noisy inputs. Overall, existing models are less than satisfactory in robustness evaluation, which suggests opportunities for future improvement.
We present a new method, Soloist,1 that uses transfer learning and machine teaching to build task bots at scale. We parameterize classical modular task-oriented dialog systems using a Transformer-based auto-regressive language model, which subsumes different dialog modules into a single neural model. We pre-train, on heterogeneous dialog corpora, a task-grounded response generation model, which can generate dialog responses grounded in user goals and real-world knowledge for task completion. The pre-trained model can be efficiently adapted to accomplish new tasks with a handful of task-specific dialogs via machine teaching, where training samples are generated by human teachers interacting with the system. Experiments show that (i)Soloist creates new state-of-the-art on well-studied task-oriented dialog benchmarks, including CamRest676 and MultiWOZ; (ii) in the few-shot fine-tuning settings, Soloist significantly outperforms existing methods; and (iii) the use of machine teaching substantially reduces the labeling cost of fine-tuning. The pre-trained models and codes are available at https://aka.ms/soloist.
We present ConvLab-2, an open-source toolkit that enables researchers to build task-oriented dialogue systems with state-of-the-art models, perform an end-to-end evaluation, and diagnose the weakness of systems. As the successor of ConvLab, ConvLab-2 inherits ConvLab’s framework but integrates more powerful dialogue models and supports more datasets. Besides, we have developed an analysis tool and an interactive tool to assist researchers in diagnosing dialogue systems. The analysis tool presents rich statistics and summarizes common mistakes from simulated dialogues, which facilitates error analysis and system improvement. The interactive tool provides an user interface that allows developers to diagnose an assembled dialogue system by interacting with the system and modifying the output of each system component.
Traditionally, industry solutions for building a task-oriented dialog system have relied on helping dialog authors define rule-based dialog managers, represented as dialog flows. While dialog flows are intuitively interpretable and good for simple scenarios, they fall short of performance in terms of the flexibility needed to handle complex dialogs. On the other hand, purely machine-learned models can handle complex dialogs, but they are considered to be black boxes and require large amounts of training data. In this demonstration, we showcase Conversation Learner, a machine teaching tool for building dialog managers. It combines the best of both approaches by enabling dialog authors to create a dialog flow using familiar tools, converting the dialog flow into a parametric model (e.g., neural networks), and allowing dialog authors to improve the dialog manager (i.e., the parametric model) over time by leveraging user-system dialog logs as training data through a machine teaching interface.
As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewshotWOZ, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewshotWOZ and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.
Reinforcement learning methods have emerged as a popular choice for training an efficient and effective dialogue policy. However, these methods suffer from sparse and unstable reward signals returned by a user simulator only when a dialogue finishes. Besides, the reward signal is manually designed by human experts, which requires domain knowledge. Recently, a number of adversarial learning methods have been proposed to learn the reward function together with the dialogue policy. However, to alternatively update the dialogue policy and the reward model on the fly, we are limited to policy-gradient-based algorithms, such as REINFORCE and PPO. Moreover, the alternating training of a dialogue agent and the reward model can easily get stuck in local optima or result in mode collapse. To overcome the listed issues, we propose to decompose the adversarial training into two steps. First, we train the discriminator with an auxiliary dialogue generator and then incorporate a derived reward model into a common reinforcement learning method to guide the dialogue policy learning. This approach is applicable to both on-policy and off-policy reinforcement learning methods. Based on our extensive experimentation, we can conclude the proposed method: (1) achieves a remarkable task success rate using both on-policy and off-policy reinforcement learning methods; and (2) has potential to transfer knowledge from existing domains to a new domain.
There is a growing interest in developing goal-oriented dialog systems which serve users in accomplishing complex tasks through multi-turn conversations. Although many methods are devised to evaluate and improve the performance of individual dialog components, there is a lack of comprehensive empirical study on how different components contribute to the overall performance of a dialog system. In this paper, we perform a system-wise evaluation and present an empirical analysis on different types of dialog systems which are composed of different modules in different settings. Our results show that (1) a pipeline dialog system trained using fine-grained supervision signals at different component levels often obtains better performance than the systems that use joint or end-to-end models trained on coarse-grained labels, (2) component-wise, single-turn evaluation results are not always consistent with the overall performance of a dialog system, and (3) despite the discrepancy between simulators and human users, simulated evaluation is still a valid alternative to the costly human evaluation especially in the early stage of development.
We present ConvLab, an open-source multi-domain end-to-end dialog system platform, that enables researchers to quickly set up experiments with reusable components and compare a large set of different approaches, ranging from conventional pipeline systems to end-to-end neural models, in common environments. ConvLab offers a set of fully annotated datasets and associated pre-trained reference models. As a showcase, we extend the MultiWOZ dataset with user dialog act annotations to train all component models and demonstrate how ConvLab makes it easy and effortless to conduct complicated experiments in multi-domain end-to-end dialog settings.