Jing Gu


2024

pdf bib
Muffin or Chihuahua? Challenging Multimodal Large Language Models with Multipanel VQA
Yue Fan | Jing Gu | Kaiwen Zhou | Qianqi Yan | Shan Jiang | Ching-Chen Kuo | Yang Zhao | Xinze Guan | Xin Wang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multipanel images, commonly seen as web screenshots, posters, etc., pervade our daily lives. These images, characterized by their composition of multiple subfigures in distinct layouts, effectively convey information to people. Toward building advanced multimodal AI applications, such as agents that understand complex scenes and navigate through webpages, the skill of multipanel visual reasoning is essential, and a comprehensive evaluation of models in this regard is important. Therefore, we introduce Multipanel Visual Question Answering (MultipanelVQA), a novel benchmark comprising 6,600 triplets of questions, answers, and multipanel images that specifically challenge models in comprehending multipanel images. Our evaluation shows that questions in the MultipanelVQA benchmark pose significant challenges to the state-of-the-art Multimodal Large Language Models (MLLMs) tested, even though humans can attain approximately 99% accuracy on these questions. Distinctively, the MultipanelVQA benchmark features synthetically generated multipanel images specifically crafted to isolate and assess the impact of various factors, such as the layout, on MLLMs’ multipanel image comprehension abilities. As a result, in addition to benchmarking the capabilities of MLLMs in understanding multipanel images, we analyze various factors of the multipanel image that affect MLLMs’ performance with synthetic data and offer insights for enhancement.

pdf bib
Proceedings of the 3rd Workshop on Advances in Language and Vision Research (ALVR)
Jing Gu | Tsu-Jui (Ray) Fu | Drew Hudson | Asli Celikyilmaz | William Wang
Proceedings of the 3rd Workshop on Advances in Language and Vision Research (ALVR)

pdf bib
LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing
Jiangshu Du | Yibo Wang | Wenting Zhao | Zhongfen Deng | Shuaiqi Liu | Renze Lou | Henry Peng Zou | Pranav Narayanan Venkit | Nan Zhang | Mukund Srinath | Haoran Ranran Zhang | Vipul Gupta | Yinghui Li | Tao Li | Fei Wang | Qin Liu | Tianlin Liu | Pengzhi Gao | Congying Xia | Chen Xing | Cheng Jiayang | Zhaowei Wang | Ying Su | Raj Sanjay Shah | Ruohao Guo | Jing Gu | Haoran Li | Kangda Wei | Zihao Wang | Lu Cheng | Surangika Ranathunga | Meng Fang | Jie Fu | Fei Liu | Ruihong Huang | Eduardo Blanco | Yixin Cao | Rui Zhang | Philip S. Yu | Wenpeng Yin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Claim: This work is not advocating the use of LLMs for paper (meta-)reviewing. Instead, wepresent a comparative analysis to identify and distinguish LLM activities from human activities. Two research goals: i) Enable better recognition of instances when someone implicitly uses LLMs for reviewing activities; ii) Increase community awareness that LLMs, and AI in general, are currently inadequate for performing tasks that require a high level of expertise and nuanced judgment.This work is motivated by two key trends. On one hand, large language models (LLMs) have shown remarkable versatility in various generative tasks such as writing, drawing, and question answering, significantly reducing the time required for many routine tasks. On the other hand, researchers, whose work is not only time-consuming but also highly expertise-demanding, face increasing challenges as they have to spend more time reading, writing, and reviewing papers. This raises the question: how can LLMs potentially assist researchers in alleviating their heavy workload?This study focuses on the topic of LLMs as NLP Researchers, particularly examining the effectiveness of LLMs in assisting paper (meta-)reviewing and its recognizability. To address this, we constructed the ReviewCritique dataset, which includes two types of information: (i) NLP papers (initial submissions rather than camera-ready) with both human-written and LLM-generated reviews, and (ii) each review comes with “deficiency” labels and corresponding explanations for individual segments, annotated by experts. Using ReviewCritique, this study explores two threads of research questions: (i) “LLMs as Reviewers”, how do reviews generated by LLMs compare with those written by humans in terms of quality and distinguishability? (ii) “LLMs as Metareviewers”, how effectively can LLMs identify potential issues, such as Deficient or unprofessional review segments, within individual paper reviews? To our knowledge, this is the first work to provide such a comprehensive analysis.

2023

pdf bib
R2H: Building Multimodal Navigation Helpers that Respond to Help Requests
Yue Fan | Jing Gu | Kaizhi Zheng | Xin Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Intelligent navigation-helper agents are critical as they can navigate users in unknown areas through environmental awareness and conversational ability, serving as potential accessibility tools for individuals with disabilities. In this work, we first introduce a novel benchmark, Respond to Help Requests (R2H), to promote the development of multi-modal navigation helpers capable of responding to requests for help, utilizing existing dialog-based embodied datasets. R2H mainly includes two tasks: (1) Respond to Dialog History (RDH), which assesses the helper agent’s ability to generate informative responses based on a given dialog history, and (2) Respond during Interaction (RdI), which evaluates the effectiveness and efficiency of the response during consistent cooperation with a task performer. Furthermore, we explore two approaches to construct the navigation-helper agent, including fine-tuning a novel task-oriented multi-modal response generation model that can see and respond, named SeeRee, and employing a multi-modal large language model in a zero-shot manner. Analysis of the task and method was conducted based on both automatic benchmarking and human evaluations.

2022

pdf bib
Vision-and-Language Navigation: A Survey of Tasks, Methods, and Future Directions
Jing Gu | Eliana Stefani | Qi Wu | Jesse Thomason | Xin Wang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

A long-term goal of AI research is to build intelligent agents that can communicate with humans in natural language, perceive the environment, and perform real-world tasks. Vision-and-Language Navigation (VLN) is a fundamental and interdisciplinary research topic towards this goal, and receives increasing attention from natural language processing, computer vision, robotics, and machine learning communities. In this paper, we review contemporary studies in the emerging field of VLN, covering tasks, evaluation metrics, methods, etc. Through structured analysis of current progress and challenges, we also highlight the limitations of current VLN and opportunities for future work. This paper serves as a thorough reference for the VLN research community.

pdf bib
Memformer: A Memory-Augmented Transformer for Sequence Modeling
Qingyang Wu | Zhenzhong Lan | Kun Qian | Jing Gu | Alborz Geramifard | Zhou Yu
Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022

Transformers have reached remarkable success in sequence modeling. However, these models have efficiency issues as they need to store all the history token-level representations as memory. We present Memformer, an efficient neural network for sequence modeling, that utilizes an external dynamic memory to encode and retrieve past information. Our model achieves linear time complexity and constant memory space complexity when processing long sequences. We also propose a new optimization scheme, memory replay back-propagation (MRBP), which promotes long-range back-propagation through time with a significantly reduced memory requirement. Experimental results show that Memformer has achieved comparable performance compared against the baselines by using 8.1x less memory space and 3.2x faster on inference. Analysis of the attention pattern shows that our external memory slots can encode and retain important information through timesteps.

2021

pdf bib
PRAL: A Tailored Pre-Training Model for Task-Oriented Dialog Generation
Jing Gu | Qingyang Wu | Chongruo Wu | Weiyan Shi | Zhou Yu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Large pre-trained language generation models such as GPT-2 have demonstrated their effectiveness as language priors by reaching state-of-the-art results in various language generation tasks. However, the performance of pre-trained models on task-oriented dialog tasks is still under-explored. We propose a Pre-trainedRole Alternating Language model (PRAL), explicitly designed for task-oriented conversational systems. We design several techniques: start position randomization, knowledge distillation, and history discount to improve pre-training performance. In addition, we introduce a high-quality large-scale task-oriented dialog pre-training dataset by post-prossessing13 dialog datasets. We effectively adapt PRALon three downstream tasks. The results show that PRAL outperforms or is on par with state-of-the-art models.

pdf bib
ChainCQG: Flow-Aware Conversational Question Generation
Jing Gu | Mostafa Mirshekari | Zhou Yu | Aaron Sisto
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Conversational systems enable numerous valuable applications, and question-answering is an important component underlying many of these. However, conversational question-answering remains challenging due to the lack of realistic, domain-specific training data. Inspired by this bottleneck, we focus on conversational question generation as a means to generate synthetic conversations for training and evaluation purposes. We present a number of novel strategies to improve conversational flow and accommodate varying question types and overall fluidity. Specifically, we design ChainCQG as a two-stage architecture that learns question-answer representations across multiple dialogue turns using a flow propagation training strategy. ChainCQG significantly outperforms both answer-aware and answer-unaware SOTA baselines (e.g., up to 48% BLEU-1 improvement). Additionally, our model is able to generate different types of questions, with improved fluidity and coreference alignment.

pdf bib
ConQuest: Contextual Question Paraphrasing through Answer-Aware Synthetic Question Generation
Mostafa Mirshekari | Jing Gu | Aaron Sisto
Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)

Despite excellent performance on tasks such as question answering, Transformer-based architectures remain sensitive to syntactic and contextual ambiguities. Question Paraphrasing (QP) offers a promising solution as a means to augment existing datasets. The main challenges of current QP models include lack of training data and difficulty in generating diverse and natural questions. In this paper, we present Conquest, a framework for generating synthetic datasets for contextual question paraphrasing. To this end, Conquest first employs an answer-aware question generation (QG) model to create a question-pair dataset and then uses this data to train a contextualized question paraphrasing model. We extensively evaluate Conquest and show its ability to produce more diverse and fluent question pairs than existing approaches. Our contextual paraphrase model also establishes a strong baseline for end-to-end contextual paraphrasing. Further, We find that context can improve BLEU-1 score on contextual compression and expansion by 4.3 and 11.2 respectively, compared to a non-contextual model.

2020

pdf bib
Data Annealing for Informal Language Understanding Tasks
Jing Gu | Zhou Yu
Findings of the Association for Computational Linguistics: EMNLP 2020

There is a huge performance gap between formal and informal language understanding tasks. The recent pre-trained models that improved formal language understanding tasks did not achieve a comparable result on informal language. We propose data annealing transfer learning procedure to bridge the performance gap on informal natural language understanding tasks. It successfully utilizes a pre-trained model such as BERT in informal language. In the data annealing procedure, the training set contains mainly formal text data at first; then, the proportion of the informal text data is gradually increased during the training process. Our data annealing procedure is model-independent and can be applied to various tasks. We validate its effectiveness in exhaustive experiments. When BERT is implemented with our learning procedure, it outperforms all the state-of-the-art models on the three common informal language tasks.