Jing He


2024

pdf bib
MLeVLM: Improve Multi-level Progressive Capabilities based on Multimodal Large Language Model for Medical Visual Question Answering
Dexuan Xu | Yanyuan Chen | Jieyi Wang | Yue Huang | Hanpin Wang | Zhi Jin | Hongxing Wang | Weihua Yue | Jing He | Hang Li | Yu Huang
Findings of the Association for Computational Linguistics: ACL 2024

Medical visual question answering (MVQA) requires in-depth understanding of medical images and questions to provide reliable answers. We summarize multi-level progressive capabilities that models need to focus on in MVQA: recognition, details, diagnosis, knowledge, and reasoning. Existing MVQA models tend to ignore the above capabilities due to unspecific data and plain architecture. To address these issues, this paper proposes Multi-level Visual Language Model (MLeVLM) for MVQA. On the data side, we construct a high-quality multi-level instruction dataset MLe-VQA via GPT-4, which covers multi-level questions and answers as well as reasoning processes from visual clues to semantic cognition. On the architecture side, we propose a multi-level feature alignment module, including attention-based token selector and context merger, which can efficiently align features at different levels from visual to semantic. To better evaluate the model’s capabilities, we manually construct a multi-level MVQA evaluation benchmark named MLe-Bench. Extensive experiments demonstrate the effectiveness of our constructed multi-level instruction dataset and the multi-level feature alignment module. It also proves that MLeVLM outperforms existing medical multimodal large language models.

2016

pdf bib
A Parallel-Hierarchical Model for Machine Comprehension on Sparse Data
Adam Trischler | Zheng Ye | Xingdi Yuan | Jing He | Philip Bachman
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Policy Networks with Two-Stage Training for Dialogue Systems
Mehdi Fatemi | Layla El Asri | Hannes Schulz | Jing He | Kaheer Suleman
Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue

2012

pdf bib
Bridging the Gap between Intrinsic and Perceived Relevance in Snippet Generation
Jing He | Pablo Duboue | Jian-Yun Nie
Proceedings of COLING 2012

2011

pdf bib
Word-reordering for Statistical Machine Translation Using Trigram Language Model
Jing He | Hongyu Liang
Proceedings of 5th International Joint Conference on Natural Language Processing

pdf bib
Topical Keyphrase Extraction from Twitter
Xin Zhao | Jing Jiang | Jing He | Yang Song | Palakorn Achanauparp | Ee-Peng Lim | Xiaoming Li
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies

2009

pdf bib
Generating Chinese Couplets and Quatrain Using a Statistical Approach
Ming Zhou | Long Jiang | Jing He
Proceedings of the 23rd Pacific Asia Conference on Language, Information and Computation, Volume 1