Jing Huang


2021

pdf bib
Variance-reduced First-order Meta-learning for Natural Language Processing Tasks
Lingxiao Wang | Kevin Huang | Tengyu Ma | Quanquan Gu | Jing Huang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

First-order meta-learning algorithms have been widely used in practice to learn initial model parameters that can be quickly adapted to new tasks due to their efficiency and effectiveness. However, existing studies find that meta-learner can overfit to some specific adaptation when we have heterogeneous tasks, leading to significantly degraded performance. In Natural Language Processing (NLP) applications, datasets are often diverse and each task has its unique characteristics. Therefore, to address the overfitting issue when applying first-order meta-learning to NLP applications, we propose to reduce the variance of the gradient estimator used in task adaptation. To this end, we develop a variance-reduced first-order meta-learning algorithm. The core of our algorithm is to introduce a novel variance reduction term to the gradient estimation when performing the task adaptation. Experiments on two NLP applications: few-shot text classification and multi-domain dialog state tracking demonstrate the superior performance of our proposed method.

pdf bib
Graph Ensemble Learning over Multiple Dependency Trees for Aspect-level Sentiment Classification
Xiaochen Hou | Peng Qi | Guangtao Wang | Rex Ying | Jing Huang | Xiaodong He | Bowen Zhou
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent work on aspect-level sentiment classification has demonstrated the efficacy of incorporating syntactic structures such as dependency trees with graph neural networks (GNN), but these approaches are usually vulnerable to parsing errors. To better leverage syntactic information in the face of unavoidable errors, we propose a simple yet effective graph ensemble technique, GraphMerge, to make use of the predictions from different parsers. Instead of assigning one set of model parameters to each dependency tree, we first combine the dependency relations from different parses before applying GNNs over the resulting graph. This allows GNN models to be robust to parse errors at no additional computational cost, and helps avoid overparameterization and overfitting from GNN layer stacking by introducing more connectivity into the ensemble graph. Our experiments on the SemEval 2014 Task 4 and ACL 14 Twitter datasets show that our GraphMerge model not only outperforms models with single dependency tree, but also beats other ensemble models without adding model parameters.

pdf bib
Selective Attention Based Graph Convolutional Networks for Aspect-Level Sentiment Classification
Xiaochen Hou | Jing Huang | Guangtao Wang | Peng Qi | Xiaodong He | Bowen Zhou
Proceedings of the Fifteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-15)

Recent work on aspect-level sentiment classification has employed Graph Convolutional Networks (GCN) over dependency trees to learn interactions between aspect terms and opinion words. In some cases, the corresponding opinion words for an aspect term cannot be reached within two hops on dependency trees, which requires more GCN layers to model. However, GCNs often achieve the best performance with two layers, and deeper GCNs do not bring any additional gain. Therefore, we design a novel selective attention based GCN model. On one hand, the proposed model enables the direct interaction between aspect terms and context words via the self-attention operation without the distance limitation on dependency trees. On the other hand, a top-k selection procedure is designed to locate opinion words by selecting k context words with the highest attention scores. We conduct experiments on several commonly used benchmark datasets and the results show that our proposed SA-GCN outperforms strong baseline models.

pdf bib
Entity and Evidence Guided Document-Level Relation Extraction
Kevin Huang | Peng Qi | Guangtao Wang | Tengyu Ma | Jing Huang
Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021)

Document-level relation extraction is a challenging task, requiring reasoning over multiple sentences to predict a set of relations in a document. In this paper, we propose a novel framework E2GRE (Entity and Evidence Guided Relation Extraction) that jointly extracts relations and the underlying evidence sentences by using large pretrained language model (LM) as input encoder. First, we propose to guide the pretrained LM’s attention mechanism to focus on relevant context by using attention probabilities as additional features for evidence prediction. Furthermore, instead of feeding the whole document into pretrained LMs to obtain entity representation, we concatenate document text with head entities to help LMs concentrate on parts of the document that are more related to the head entity. Our E2GRE jointly learns relation extraction and evidence prediction effectively, showing large gains on both these tasks, which we find are highly correlated.

pdf bib
Semantic Categorization of Social Knowledge for Commonsense Question Answering
Gengyu Wang | Xiaochen Hou | Diyi Yang | Kathleen McKeown | Jing Huang
Proceedings of the Second Workshop on Simple and Efficient Natural Language Processing

Large pre-trained language models (PLMs) have led to great success on various commonsense question answering (QA) tasks in an end-to-end fashion. However, little attention has been paid to what commonsense knowledge is needed to deeply characterize these QA tasks. In this work, we proposed to categorize the semantics needed for these tasks using the SocialIQA as an example. Building upon our labeled social knowledge categories dataset on top of SocialIQA, we further train neural QA models to incorporate such social knowledge categories and relation information from a knowledge base. Unlike previous work, we observe our models with semantic categorizations of social knowledge can achieve comparable performance with a relatively simple model and smaller size compared to other complex approaches.

2020

pdf bib
Orthogonal Relation Transforms with Graph Context Modeling for Knowledge Graph Embedding
Yun Tang | Jing Huang | Guangtao Wang | Xiaodong He | Bowen Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Distance-based knowledge graph embeddings have shown substantial improvement on the knowledge graph link prediction task, from TransE to the latest state-of-the-art RotatE. However, complex relations such as N-to-1, 1-to-N and N-to-N still remain challenging to predict. In this work, we propose a novel distance-based approach for knowledge graph link prediction. First, we extend the RotatE from 2D complex domain to high dimensional space with orthogonal transforms to model relations. The orthogonal transform embedding for relations keeps the capability for modeling symmetric/anti-symmetric, inverse and compositional relations while achieves better modeling capacity. Second, the graph context is integrated into distance scoring functions directly. Specifically, graph context is explicitly modeled via two directed context representations. Each node embedding in knowledge graph is augmented with two context representations, which are computed from the neighboring outgoing and incoming nodes/edges respectively. The proposed approach improves prediction accuracy on the difficult N-to-1, 1-to-N and N-to-N cases. Our experimental results show that it achieves state-of-the-art results on two common benchmarks FB15k-237 and WNRR-18, especially on FB15k-237 which has many high in-degree nodes.

2019

pdf bib
Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs
Ming Tu | Guangtao Wang | Jing Huang | Yun Tang | Xiaodong He | Bowen Zhou
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Multi-hop reading comprehension (RC) across documents poses new challenge over single-document RC because it requires reasoning over multiple documents to reach the final answer. In this paper, we propose a new model to tackle the multi-hop RC problem. We introduce a heterogeneous graph with different types of nodes and edges, which is named as Heterogeneous Document-Entity (HDE) graph. The advantage of HDE graph is that it contains different granularity levels of information including candidates, documents and entities in specific document contexts. Our proposed model can do reasoning over the HDE graph with nodes representation initialized with co-attention and self-attention based context encoders. We employ Graph Neural Networks (GNN) based message passing algorithms to accumulate evidences on the proposed HDE graph. Evaluated on the blind test set of the Qangaroo WikiHop data set, our HDE graph based single model delivers competitive result, and the ensemble model achieves the state-of-the-art performance.

pdf bib
Relation Module for Non-Answerable Predictions on Reading Comprehension
Kevin Huang | Yun Tang | Jing Huang | Xiaodong He | Bowen Zhou
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Machine reading comprehension (MRC) has attracted significant amounts of research attention recently, due to an increase of challenging reading comprehension datasets. In this paper, we aim to improve a MRC model’s ability to determine whether a question has an answer in a given context (e.g. the recently proposed SQuAD 2.0 task). The relation module consists of both semantic extraction and relational information. We first extract high level semantics as objects from both question and context with multi-head self-attentive pooling. These semantic objects are then passed to a relation network, which generates relationship scores for each object pair in a sentence. These scores are used to determine whether a question is non-answerable. We test the relation module on the SQuAD 2.0 dataset using both the BiDAF and BERT models as baseline readers. We obtain 1.8% gain of F1 accuracy on top of the BiDAF reader, and 1.0% on top of the BERT base model. These results show the effectiveness of our relation module on MRC.

2001

pdf bib
Information Extraction from Voicemail
Jing Huang | Geoffrey Zweig | Mukund Padmanabhan
Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics