Recent explorations of large-scale pre-trained language models (PLMs) have revealed the power of PLMs with huge amounts of parameters, setting off a wave of training ever-larger PLMs. However, it requires tremendous computational resources to train a large-scale PLM, which may be practically unaffordable. In addition, existing large-scale PLMs are mainly trained from scratch individually, ignoring that many well-trained PLMs are available. To this end, we explore the question how could existing PLMs benefit training large-scale PLMs in future. Specifically, we introduce a pre-training framework named “knowledge inheritance” (KI) and explore how could knowledge distillation serve as auxiliary supervision during pre-training to efficiently learn larger PLMs. Experimental results demonstrate the superiority of KI in training efficiency. We also conduct empirical analyses to explore the effects of teacher PLMs’ pre-training settings, including model architecture, pre-training data, etc. Finally, we show that KI could be applied to domain adaptation and knowledge transfer.
It is very common to use quotations (quotes) to make our writings more elegant or convincing. To help people find appropriate quotes efficiently, the task of quote recommendation is presented, aiming to recommend quotes that fit the current context of writing. There have been various quote recommendation approaches, but they are evaluated on different unpublished datasets. To facilitate the research on this task, we build a large and fully open quote recommendation dataset called QuoteR, which comprises three parts including English, standard Chinese and classical Chinese. Any part of it is larger than previous unpublished counterparts. We conduct an extensive evaluation of existing quote recommendation methods on QuoteR. Furthermore, we propose a new quote recommendation model that significantly outperforms previous methods on all three parts of QuoteR. All the code and data of this paper can be obtained at
https://github.com/thunlp/QuoteR.
Recent years have witnessed the prevalent application of pre-trained language models (PLMs) in NLP. From the perspective of parameter space, PLMs provide generic initialization, starting from which high-performance minima could be found. Although plenty of works have studied how to effectively and efficiently adapt PLMs to high-performance minima, little is known about the connection of various minima reached under different adaptation configurations. In this paper, we investigate the geometric connections of different minima through the lens of mode connectivity, which measures whether two minima can be connected with a low-loss path. We conduct empirical analyses to investigate three questions: (1) how could hyperparameters, specific tuning methods, and training data affect PLM’s mode connectivity? (2) How does mode connectivity change during pre-training? (3) How does the PLM’s task knowledge change along the path connecting two minima? In general, exploring the mode connectivity of PLMs conduces to understanding the geometric connection of different minima, which may help us fathom the inner workings of PLM downstream adaptation. The codes are publicly available at https://github.com/thunlp/Mode-Connectivity-PLM.
Delta tuning (DET, also known as parameter-efficient tuning) is deemed as the new paradigm for using pre-trained language models (PLMs). Up to now, various DETs with distinct design elements have been proposed, achieving performance on par with fine-tuning. However, the mechanisms behind the above success are still under-explored, especially the connections among various DETs. To fathom the mystery, we hypothesize that the adaptations of different DETs could all be reparameterized as low-dimensional optimizations in a unified optimization subspace, which could be found by jointly decomposing independent solutions of different DETs. Then we explore the connections among different DETs by conducting optimization within the subspace. In experiments, we find that, for a certain DET, conducting optimization simply in the subspace could achieve comparable performance to its original space, and the found solution in the subspace could be transferred to another DET and achieve non-trivial performance. We also visualize the performance landscape of the subspace, and find that, there exists a substantial region where different DETs all perform well. Finally, we extend our analysis and show the strong connections between fine-tuning and DETs. The codes are publicly available at https://github.com/thunlp/Unified-DeltaTuning.