Jinghang Gu


pdf bib
Inclusion in CSR Reports: The Lens from a Data-Driven Machine Learning Model
Lu Lu | Jinghang Gu | Chu-Ren Huang
Proceedings of the First Computing Social Responsibility Workshop within the 13th Language Resources and Evaluation Conference

Inclusion, as one of the foundations in the diversity, equity, and inclusion initiative, concerns the degree of being treated as an ingroup member in a workplace. Despite of its importance in a corporate’s ecosystem, the inclusion strategies and its performance are not adequately addressed in corporate social responsibility (CSR) and CSR reporting. This study proposes a machine learning and big data-based model to examine inclusion through the use of stereotype content in actual language use. The distribution of the stereotype content in general corpora of a given society is utilized as a baseline, with which texts about corporate texts are compared. This study not only propose a model to identify and classify inclusion in language use, but also provides insights to measure and track progress by including inclusion in CSR reports as a strategy to build an inclusive corporate team.


pdf bib
PolyU CBS-Comp at SemEval-2021 Task 1: Lexical Complexity Prediction (LCP)
Rong Xiang | Jinghang Gu | Emmanuele Chersoni | Wenjie Li | Qin Lu | Chu-Ren Huang
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

In this contribution, we describe the system presented by the PolyU CBS-Comp Team at the Task 1 of SemEval 2021, where the goal was the estimation of the complexity of words in a given sentence context. Our top system, based on a combination of lexical, syntactic, word embeddings and Transformers-derived features and on a Gradient Boosting Regressor, achieves a top correlation score of 0.754 on the subtask 1 for single words and 0.659 on the subtask 2 for multiword expressions.


pdf bib
Affection Driven Neural Networks for Sentiment Analysis
Rong Xiang | Yunfei Long | Mingyu Wan | Jinghang Gu | Qin Lu | Chu-Ren Huang
Proceedings of the Twelfth Language Resources and Evaluation Conference

Deep neural network models have played a critical role in sentiment analysis with promising results in the recent decade. One of the essential challenges, however, is how external sentiment knowledge can be effectively utilized. In this work, we propose a novel affection-driven approach to incorporating affective knowledge into neural network models. The affective knowledge is obtained in the form of a lexicon under the Affect Control Theory (ACT), which is represented by vectors of three-dimensional attributes in Evaluation, Potency, and Activity (EPA). The EPA vectors are mapped to an affective influence value and then integrated into Long Short-term Memory (LSTM) models to highlight affective terms. Experimental results show a consistent improvement of our approach over conventional LSTM models by 1.0% to 1.5% in accuracy on three large benchmark datasets. Evaluations across a variety of algorithms have also proven the effectiveness of leveraging affective terms for deep model enhancement.