Jingjing Li


2024

pdf bib
An Entropy-based Text Watermarking Detection Method
Yijian Lu | Aiwei Liu | Dianzhi Yu | Jingjing Li | Irwin King
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Text watermarking algorithms for large language models (LLMs) can effectively identify machine-generated texts by embedding and detecting hidden features in the text. Although the current text watermarking algorithms perform well in most high-entropy scenarios, its performance in low-entropy scenarios still needs to be improved. In this work, we opine that the influence of token entropy should be fully considered in the watermark detection process, i.e., the weight of each token during watermark detection should be customized according to its entropy, rather than setting the weights of all tokens to the same value as in previous methods. Specifically, we propose Entropy-based Text Watermarking Detection (EWD) that gives higher-entropy tokens higher influence weights during watermark detection, so as to better reflect the degree of watermarking. Furthermore, the proposed detection process is training-free and fully automated. From the experiments, we demonstrate that our EWD can achieve better detection performance in low-entropy scenarios, and our method is also general and can be applied to texts with different entropy distributions. Our code and data is available. Additionally, our algorithm could be accessed through MarkLLM (CITATION).

pdf bib
VOLTA: Improving Generative Diversity by Variational Mutual Information Maximizing Autoencoder
Yueen Ma | DaFeng Chi | Jingjing Li | Kai Song | Yuzheng Zhuang | Irwin King
Findings of the Association for Computational Linguistics: NAACL 2024

The natural language generation domain has witnessed great success thanks to Transformer models. Although they have achieved state-of-the-art generative quality, they often neglect generative diversity. Prior attempts to tackle this issue suffer from either low model capacity or over-complicated architectures. Some recent methods employ the VAE framework to enhance diversity, but their latent variables fully depend on the input context, restricting exploration of the latent space. In this paper, we introduce VOLTA, a framework that elevates generative diversity by bridging Transformer with VAE via a more effective cross-attention-based connection, departing from conventional embedding concatenation or summation. Additionally, we propose integrating InfoGAN-style latent codes to enable input-independent variability, further diversifying the generation. Moreover, our framework accommodates discrete inputs alongside its existing support for continuous inputs. We perform comprehensive experiments with two types of Transformers on six datasets from three different NLG tasks to show that our approach can significantly improve generative diversity while maintaining generative quality.

pdf bib
SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation
Minda Hu | Licheng Zong | Hongru Wang | Jingyan Zhou | Jingjing Li | Yichen Gao | Kam-Fai Wong | Yu Li | Irwin King
Findings of the Association for Computational Linguistics: EMNLP 2024

Large Language Models (LLMs) have shown great potential in the biomedical domain with the advancement of retrieval-augmented generation (RAG). However, existing retrieval-augmented approaches face challenges in addressing diverse queries and documents, particularly for medical knowledge queries, resulting in sub-optimal performance. To address these limitations, we propose a novel plug-and-play LLM-based retrieval method called Self-Rewarding Tree Search (SeRTS) based on Monte Carlo Tree Search (MCTS) and a self-rewarding paradigm. By combining the reasoning capabilities of LLMs with the effectiveness of tree search, SeRTS boosts the zero-shot performance of retrieving high-quality and informative results for RAG. We further enhance retrieval performance by fine-tuning LLMs with Proximal Policy Optimization (PPO) objectives using the trajectories collected by SeRTS as feedback. Controlled experiments using the BioASQ-QA dataset with GPT-3.5-Turbo and LLama2-7b demonstrate that our method significantly improves the performance of the BM25 retriever and surpasses the strong baseline of self-reflection in both efficiency and scalability. Moreover, SeRTS generates higher-quality feedback for PPO training than self-reflection. Our proposed method effectively adapts LLMs to document retrieval tasks, enhancing their ability to retrieve highly relevant documents for RAG in the context of medical knowledge queries. This work presents a significant step forward in leveraging LLMs for accurate and comprehensive biomedical question answering.

pdf bib
CLongEval: A Chinese Benchmark for Evaluating Long-Context Large Language Models
Zexuan Qiu | Jingjing Li | Shijue Huang | Xiaoqi Jiao | Wanjun Zhong | Irwin King
Findings of the Association for Computational Linguistics: EMNLP 2024

Developing Large Language Models (LLMs) with robust long-context capabilities has been the recent research focus, resulting in the emergence of long-context LLMs proficient in Chinese. However, the evaluation of these models remains underdeveloped due to a lack of benchmarks. To address this gap, we present CLongEval, a comprehensive Chinese benchmark for evaluating long-context LLMs. CLongEval is characterized by three key features: (1) Sufficient data volume, comprising 7 distinct tasks and 7,267 examples; (2) Broad applicability, accommodating to models with context windows size from 1K to 100K; (3) High quality, with over 2,000 manually annotated question-answer pairs in addition to the automatically constructed labels. With CLongEval, we undertake a comprehensive assessment of 6 open-source long-context LLMs and 2 leading commercial counterparts that feature both long-context abilities and proficiency in Chinese. We also provide in-depth analysis based on the empirical results, trying to shed light on the critical capabilities that present challenges in long-context settings. The dataset, evaluation scripts, and model outputs will be released.

2022

pdf bib
Text Revision by On-the-Fly Representation Optimization
Jingjing Li | Zichao Li | Tao Ge | Irwin King | Michael Lyu
Proceedings of the First Workshop on Intelligent and Interactive Writing Assistants (In2Writing 2022)

Text revision refers to a family of natural language generation tasks, where the source and target sequences share moderate resemblance in surface form but differentiate in attributes, such as text formality and simplicity. Current state-of-the-art methods formulate these tasks as sequence-to-sequence learning problems, which rely on large-scale parallel training corpus. In this paper, we present an iterative inplace editing approach for text revision, which requires no parallel data. In this approach, we simply fine-tune a pre-trained Transformer with masked language modeling and attribute classification. During inference, the editing at each iteration is realized by two-step span replacement. At the first step, the distributed representation of the text optimizes on the fly towards an attribute function. At the second step, a text span is masked and another new one is proposed conditioned on the optimized representation. The empirical experiments on two typical and important text revision tasks, text formalization and text simplification, show the effectiveness of our approach. It achieves competitive and even better performance than state-of-the-art supervised methods on text simplification, and gains better performance than strong unsupervised methods on text formalization.

2020

pdf bib
Discern: Discourse-Aware Entailment Reasoning Network for Conversational Machine Reading
Yifan Gao | Chien-Sheng Wu | Jingjing Li | Shafiq Joty | Steven C.H. Hoi | Caiming Xiong | Irwin King | Michael Lyu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Document interpretation and dialog understanding are the two major challenges for conversational machine reading. In this work, we propose “Discern”, a discourse-aware entailment reasoning network to strengthen the connection and enhance the understanding of both document and dialog. Specifically, we split the document into clause-like elementary discourse units (EDU) using a pre-trained discourse segmentation model, and we train our model in a weakly-supervised manner to predict whether each EDU is entailed by the user feedback in a conversation. Based on the learned EDU and entailment representations, we either reply to the user our final decision “yes/no/irrelevant” of the initial question, or generate a follow-up question to inquiry more information. Our experiments on the ShARC benchmark (blind, held-out test set) show that Discern achieves state-of-the-art results of 78.3% macro-averaged accuracy on decision making and 64.0 BLEU1 on follow-up question generation. Code and models are released at https://github.com/Yifan-Gao/Discern.

2019

pdf bib
Improving Question Generation With to the Point Context
Jingjing Li | Yifan Gao | Lidong Bing | Irwin King | Michael R. Lyu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Question generation (QG) is the task of generating a question from a reference sentence and a specified answer within the sentence. A major challenge in QG is to identify answer-relevant context words to finish the declarative-to-interrogative sentence transformation. Existing sequence-to-sequence neural models achieve this goal by proximity-based answer position encoding under the intuition that neighboring words of answers are of high possibility to be answer-relevant. However, such intuition may not apply to all cases especially for sentences with complex answer-relevant relations. Consequently, the performance of these models drops sharply when the relative distance between the answer fragment and other non-stop sentence words that also appear in the ground truth question increases. To address this issue, we propose a method to jointly model the unstructured sentence and the structured answer-relevant relation (extracted from the sentence in advance) for question generation. Specifically, the structured answer-relevant relation acts as the to the point context and it thus naturally helps keep the generated question to the point, while the unstructured sentence provides the full information. Extensive experiments show that to the point context helps our question generation model achieve significant improvements on several automatic evaluation metrics. Furthermore, our model is capable of generating diverse questions for a sentence which conveys multiple relations of its answer fragment.

2013

pdf bib
PAL: A Chatterbot System for Answering Domain-specific Questions
Yuanchao Liu | Ming Liu | Xiaolong Wang | Limin Wang | Jingjing Li
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics: System Demonstrations