Jingpei Wu
2024
Temporal Fact Reasoning over Hyper-Relational Knowledge Graphs
Zifeng Ding
|
Jingcheng Wu
|
Jingpei Wu
|
Yan Xia
|
Bo Xiong
|
Volker Tresp
Findings of the Association for Computational Linguistics: EMNLP 2024
Stemming from traditional knowledge graphs (KGs), hyper-relational KGs (HKGs) provide additional key-value pairs (i.e., qualifiers) for each KG fact that help to better restrict the fact validity. In recent years, there has been an increasing interest in studying graph reasoning over HKGs. Meanwhile, as discussed in recent works that focus on temporal KGs (TKGs), world knowledge is ever-evolving, making it important to reason over temporal facts in KGs. Previous mainstream benchmark HKGs do not explicitly specify temporal information for each HKG fact. Therefore, almost all existing HKG reasoning approaches do not devise any module specifically for temporal reasoning. To better study temporal fact reasoning over HKGs, we propose a new type of data structure named hyper-relational TKG (HTKG). Every fact in an HTKG is coupled with a timestamp explicitly indicating its time validity. We develop two new benchmark HTKG datasets, i.e., Wiki-hy and YAGO-hy, and propose an HTKG reasoning model that efficiently models hyper-relational temporal facts. To support future research on this topic, we open-source our datasets and model.
zrLLM: Zero-Shot Relational Learning on Temporal Knowledge Graphs with Large Language Models
Zifeng Ding
|
Heling Cai
|
Jingpei Wu
|
Yunpu Ma
|
Ruotong Liao
|
Bo Xiong
|
Volker Tresp
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Modeling evolving knowledge over temporal knowledge graphs (TKGs) has become a heated topic. Various methods have been proposed to forecast links on TKGs. Most of them are embedding-based, where hidden representations are learned to represent knowledge graph (KG) entities and relations based on the observed graph contexts. Although these methods show strong performance on traditional TKG forecasting (TKGF) benchmarks, they face a strong challenge in modeling the unseen zero-shot relations that have no prior graph context. In this paper, we try to mitigate this problem as follows. We first input the text descriptions of KG relations into large language models (LLMs) for generating relation representations, and then introduce them into embedding-based TKGF methods. LLM-empowered representations can capture the semantic information in the relation descriptions. This makes the relations, whether seen or unseen, with similar semantic meanings stay close in the embedding space, enabling TKGF models to recognize zero-shot relations even without any observed graph context. Experimental results show that our approach helps TKGF models to achieve much better performance in forecasting the facts with previously unseen relations, while still maintaining their ability in link forecasting regarding seen relations.
Search
Co-authors
- Zifeng Ding 2
- Bo Xiong 2
- Volker Tresp 2
- Jingcheng Wu 1
- Yan Xia 1
- show all...