Jingyi You


2022

pdf bib
A-TIP: Attribute-aware Text Infilling via Pre-trained Language Model
Dongyuan Li | Jingyi You | Kotaro Funakoshi | Manabu Okumura
Proceedings of the 29th International Conference on Computational Linguistics

Text infilling aims to restore incomplete texts by filling in blanks, which has attracted more attention recently because of its wide application in ancient text restoration and text rewriting. However, attribute- aware text infilling is yet to be explored, and existing methods seldom focus on the infilling length of each blank or the number/location of blanks. In this paper, we propose an Attribute-aware Text Infilling method via a Pre-trained language model (A-TIP), which contains a text infilling component and a plug- and-play discriminator. Specifically, we first design a unified text infilling component with modified attention mechanisms and intra- and inter-blank positional encoding to better perceive the number of blanks and the infilling length for each blank. Then, we propose a plug-and-play discriminator to guide generation towards the direction of improving attribute relevance without decreasing text fluency. Finally, automatic and human evaluations on three open-source datasets indicate that A-TIP achieves state-of- the-art performance compared with all baselines.

pdf bib
JPG - Jointly Learn to Align: Automated Disease Prediction and Radiology Report Generation
Jingyi You | Dongyuan Li | Manabu Okumura | Kenji Suzuki
Proceedings of the 29th International Conference on Computational Linguistics

Automated radiology report generation aims to generate paragraphs that describe fine-grained visual differences among cases, especially those between the normal and the diseased. Existing methods seldom consider the cross-modal alignment between textual and visual features and tend to ignore disease tags as an auxiliary for report generation. To bridge the gap between textual and visual information, in this study, we propose a “Jointly learning framework for automated disease Prediction and radiology report Generation (JPG)” to improve the quality of reports through the interaction between the main task (report generation) and two auxiliary tasks (feature alignment and disease prediction). The feature alignment and disease prediction help the model learn text-correlated visual features and record diseases as keywords so that it can output high-quality reports. Besides, the improved reports in turn provide additional harder samples for feature alignment and disease prediction to learn more precise visual and textual representations and improve prediction accuracy. All components are jointly trained in a manner that helps improve them iteratively and progressively. Experimental results demonstrate the effectiveness of JPG on the most commonly used IU X-RAY dataset, showing its superior performance over multiple state-of-the-art image captioning and medical report generation methods with regard to BLEU, METEOR, and ROUGE metrics.

pdf bib
Joint Learning-based Heterogeneous Graph Attention Network for Timeline Summarization
Jingyi You | Dongyuan Li | Hidetaka Kamigaito | Kotaro Funakoshi | Manabu Okumura
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Previous studies on the timeline summarization (TLS) task ignored the information interaction between sentences and dates, and adopted pre-defined unlearnable representations for them. They also considered date selection and event detection as two independent tasks, which makes it impossible to integrate their advantages and obtain a globally optimal summary. In this paper, we present a joint learning-based heterogeneous graph attention network for TLS (HeterTls), in which date selection and event detection are combined into a unified framework to improve the extraction accuracy and remove redundant sentences simultaneously. Our heterogeneous graph involves multiple types of nodes, the representations of which are iteratively learned across the heterogeneous graph attention layer. We evaluated our model on four datasets, and found that it significantly outperformed the current state-of-the-art baselines with regard to ROUGE scores and date selection metrics.

2021

pdf bib
Abstractive Document Summarization with Word Embedding Reconstruction
Jingyi You | Chenlong Hu | Hidetaka Kamigaito | Hiroya Takamura | Manabu Okumura
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

Neural sequence-to-sequence (Seq2Seq) models and BERT have achieved substantial improvements in abstractive document summarization (ADS) without and with pre-training, respectively. However, they sometimes repeatedly attend to unimportant source phrases while mistakenly ignore important ones. We present reconstruction mechanisms on two levels to alleviate this issue. The sequence-level reconstructor reconstructs the whole document from the hidden layer of the target summary, while the word embedding-level one rebuilds the average of word embeddings of the source at the target side to guarantee that as much critical information is included in the summary as possible. Based on the assumption that inverse document frequency (IDF) measures how important a word is, we further leverage the IDF weights in our embedding-level reconstructor. The proposed frameworks lead to promising improvements for ROUGE metrics and human rating on both the CNN/Daily Mail and Newsroom summarization datasets.