Jinlin Xiao


2025

pdf bib
KG-FPQ: Evaluating Factuality Hallucination in LLMs with Knowledge Graph-based False Premise Questions
Yanxu Zhu | Jinlin Xiao | Yuhang Wang | Jitao Sang
Proceedings of the 31st International Conference on Computational Linguistics

Recent studies have demonstrated that large language models (LLMs) are susceptible to being misled by false premise questions (FPQs), leading to errors in factual knowledge, known as factuality hallucination. Existing benchmarks that assess this vulnerability primarily rely on manual construction, resulting in limited size and lack of expandability. In this work, we introduce an automated, scalable pipeline to create FPQs based on knowledge graphs (KGs). The first step is to modify true triplets extracted from KGs to create false premises. Subsequently, utilizing the state-of-the-art capabilities of GPTs, we generate semantically rich FPQs. Based on the proposed method, we present a comprehensive benchmark, the Knowledge Graph-based False Premise Questions (KG-FPQ), which contains approximately 178k FPQs across three knowledge domains, at six levels of confusability, and in two task formats. Using KG-FPQ, we conduct extensive evaluations on several representative LLMs and provide valuable insights. The KG-FPQ dataset and code are available at https://github.com/yanxuzhu/KG-FPQ.