Jinming Wen
2024
Universal Vulnerabilities in Large Language Models: Backdoor Attacks for In-context Learning
Shuai Zhao
|
Meihuizi Jia
|
Anh Tuan Luu
|
Fengjun Pan
|
Jinming Wen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
In-context learning, a paradigm bridging the gap between pre-training and fine-tuning, has demonstrated high efficacy in several NLP tasks, especially in few-shot settings. Despite being widely applied, in-context learning is vulnerable to malicious attacks. In this work, we raise security concerns regarding this paradigm. Our studies demonstrate that an attacker can manipulate the behavior of large language models by poisoning the demonstration context, without the need for fine-tuning the model. Specifically, we design a new backdoor attack method, named ICLAttack, to target large language models based on in-context learning. Our method encompasses two types of attacks: poisoning demonstration examples and poisoning demonstration prompts, which can make models behave in alignment with predefined intentions. ICLAttack does not require additional fine-tuning to implant a backdoor, thus preserving the model’s generality. Furthermore, the poisoned examples are correctly labeled, enhancing the natural stealth of our attack method. Extensive experimental results across several language models, ranging in size from 1.3B to 180B parameters, demonstrate the effectiveness of our attack method, exemplified by a high average attack success rate of 95.0% across the three datasets on OPT models.
Defending Against Weight-Poisoning Backdoor Attacks for Parameter-Efficient Fine-Tuning
Shuai Zhao
|
Leilei Gan
|
Anh Tuan Luu
|
Jie Fu
|
Lingjuan Lyu
|
Meihuizi Jia
|
Jinming Wen
Findings of the Association for Computational Linguistics: NAACL 2024
Recently, various parameter-efficient fine-tuning (PEFT) strategies for application to language models have been proposed and successfully implemented. However, this raises the question of whether PEFT, which only updates a limited set of model parameters, constitutes security vulnerabilities when confronted with weight-poisoning backdoor attacks. In this study, we show that PEFT is more susceptible to weight-poisoning backdoor attacks compared to the full-parameter fine-tuning method, with pre-defined triggers remaining exploitable and pre-defined targets maintaining high confidence, even after fine-tuning. Motivated by this insight, we developed a Poisoned Sample Identification Module (PSIM) leveraging PEFT, which identifies poisoned samples through confidence, providing robust defense against weight-poisoning backdoor attacks. Specifically, we leverage PEFT to train the PSIM with randomly reset sample labels. During the inference process, extreme confidence serves as an indicator for poisoned samples, while others are clean. We conduct experiments on text classification tasks, five fine-tuning strategies, and three weight-poisoning backdoor attack methods. Experiments show near 100% success rates for weight-poisoning backdoor attacks when utilizing PEFT. Furthermore, our defensive approach exhibits overall competitive performance in mitigating weight-poisoning backdoor attacks.
2023
Prompt as Triggers for Backdoor Attack: Examining the Vulnerability in Language Models
Shuai Zhao
|
Jinming Wen
|
Anh Luu
|
Junbo Zhao
|
Jie Fu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
The prompt-based learning paradigm, which bridges the gap between pre-training and fine-tuning, achieves state-of-the-art performance on several NLP tasks, particularly in few-shot settings. Despite being widely applied, prompt-based learning is vulnerable to backdoor attacks. Textual backdoor attacks are designed to introduce targeted vulnerabilities into models by poisoning a subset of training samples through trigger injection and label modification. However, they suffer from flaws such as abnormal natural language expressions resulting from the trigger and incorrect labeling of poisoned samples. In this study, we propose ProAttack, a novel and efficient method for performing clean-label backdoor attacks based on the prompt, which uses the prompt itself as a trigger. Our method does not require external triggers and ensures correct labeling of poisoned samples, improving the stealthy nature of the backdoor attack. With extensive experiments on rich-resource and few-shot text classification tasks, we empirically validate ProAttack’s competitive performance in textual backdoor attacks. Notably, in the rich-resource setting, ProAttack achieves state-of-the-art attack success rates in the clean-label backdoor attack benchmark without external triggers.