Jinpeng Li


2023

pdf bib
Revisiting De-Identification of Electronic Medical Records: Evaluation of Within- and Cross-Hospital Generalization
Yiyang Liu | Jinpeng Li | Enwei Zhu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The de-identification task aims to detect and remove the protected health information from electronic medical records (EMRs). Previous studies generally focus on the within-hospital setting and achieve great successes, while the cross-hospital setting has been overlooked. This study introduces a new de-identification dataset comprising EMRs from three hospitals in China, creating a benchmark for evaluating both within- and cross-hospital generalization. We find significant domain discrepancy between hospitals. A model with almost perfect within-hospital performance struggles when transferred across hospitals. Further experiments show that pretrained language models and some domain generalization methods can alleviate this problem. We believe that our data and findings will encourage investigations on the generalization of medical NLP models.

pdf bib
DialoGPS: Dialogue Path Sampling in Continuous Semantic Space for Data Augmentation in Multi-Turn Conversations
Ang Lv | Jinpeng Li | Yuhan Chen | Gao Xing | Ji Zhang | Rui Yan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In open-domain dialogue generation tasks, contexts and responses in most datasets are one-to-one mapped, violating an important many-to-many characteristic: a context leads to various responses, and a response answers multiple contexts. Without such patterns, models poorly generalize and prefer responding safely. Many attempts have been made in either multi-turn settings from a one-to-many perspective or in a many-to-many perspective but limited to single-turn settings. The major challenge to many-to-many augment multi-turn dialogues is that discretely replacing each turn with semantic similarity breaks fragile context coherence. In this paper, we propose DialoGue Path Sampling (DialoGPS) method in continuous semantic space, the first many-to-many augmentation method for multi-turn dialogues. Specifically, we map a dialogue to our extended Brownian Bridge, a special Gaussian process. We sample latent variables to form coherent dialogue paths in the continuous space. A dialogue path corresponds to a new multi-turn dialogue and is used as augmented training data. We show the effect of DialoGPS with both automatic and human evaluation.

pdf bib
VSTAR: A Video-grounded Dialogue Dataset for Situated Semantic Understanding with Scene and Topic Transitions
Yuxuan Wang | Zilong Zheng | Xueliang Zhao | Jinpeng Li | Yueqian Wang | Dongyan Zhao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Video-grounded dialogue understanding is a challenging problem that requires machine to perceive, parse and reason over situated semantics extracted from weakly aligned video and dialogues. Most existing benchmarks treat both modalities the same as a frame-independent visual understanding task, while neglecting the intrinsic attributes in multimodal dialogues, such as scene and topic transitions. In this paper, we present Video-grounded Scene&Topic AwaRe dialogue (VSTAR) dataset, a large scale video-grounded dialogue understanding dataset based on 395 TV series. Based on VSTAR, we propose two benchmarks for video-grounded dialogue understanding: scene segmentation and topic segmentation, and one benchmark for video-grounded dialogue generation. Comprehensive experiments are performed on these benchmarks to demonstrate the importance of multimodal information and segments in video-grounded dialogue understanding and generation.

pdf bib
Envisioning Future from the Past: Hierarchical Duality Learning for Multi-Turn Dialogue Generation
Ang Lv | Jinpeng Li | Shufang Xie | Rui Yan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we define a widely neglected property in dialogue text, duality, which is a hierarchical property that is reflected in human behaviours in daily conversations: Based on the logic in a conversation (or a sentence), people can infer follow-up utterances (or tokens) based on the previous text, and vice versa. We propose a hierarchical duality learning for dialogue (HDLD) to simulate this human cognitive ability, for generating high quality responses that connect both previous and follow-up dialogues. HDLD utilizes hierarchical dualities at token hierarchy and utterance hierarchy. HDLD maximizes the mutual information between past and future utterances. Thus, even if future text is invisible during inference, HDLD is capable of estimating future information implicitly based on dialogue history and generates both coherent and informative responses. In contrast to previous approaches that solely utilize future text as auxiliary information to encode during training, HDLD leverages duality to enable interaction between dialogue history and the future. This enhances the utilization of dialogue data, leading to the improvement in both automatic and human evaluation.

pdf bib
Dialogue Summarization with Static-Dynamic Structure Fusion Graph
Shen Gao | Xin Cheng | Mingzhe Li | Xiuying Chen | Jinpeng Li | Dongyan Zhao | Rui Yan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Dialogue, the most fundamental and specially privileged arena of language, gains increasing ubiquity across the Web in recent years. Quickly going through the long dialogue context and capturing salient information scattered over the whole dialogue session benefit users in many real-world Web applications such as email thread summarization and meeting minutes draft. Dialogue summarization is a challenging task in that dialogue has dynamic interaction nature and presumably inconsistent information flow among various speakers. Many researchers address this task by modeling dialogue with pre-computed static graph structure using external linguistic toolkits. However, such methods heavily depend on the reliability of external tools and the static graph construction is disjoint with the graph representation learning phase, which makes the graph can’t be dynamically adapted for the downstream summarization task. In this paper, we propose a Static-Dynamic graph-based Dialogue Summarization model (SDDS), which fuses prior knowledge from human expertise and adaptively learns the graph structure in an end-to-end learning fashion. To verify the effectiveness of SDDS, we conduct experiments on three benchmark datasets (SAMSum, MediaSum, and DialogSum) and the results verify the superiority of SDDS.

pdf bib
Deep Span Representations for Named Entity Recognition
Enwei Zhu | Yiyang Liu | Jinpeng Li
Findings of the Association for Computational Linguistics: ACL 2023

Span-based models are one of the most straightforward methods for named entity recognition (NER). Existing span-based NER systems shallowly aggregate the token representations to span representations. However, this typically results in significant ineffectiveness for long entities, a coupling between the representations of overlapping spans, and ultimately a performance degradation. In this study, we propose DSpERT (Deep Span Encoder Representations from Transformers), which comprises a standard Transformer and a span Transformer. The latter uses low-layered span representations as queries, and aggregates the token representations as keys and values, layer by layer from bottom to top. Thus, DSpERT produces span representations of deep semantics. With weight initialization from pretrained language models, DSpERT achieves performance higher than or competitive with recent state-of-the-art systems on six NER benchmarks. Experimental results verify the importance of the depth for span representations, and show that DSpERT performs particularly well on long-span entities and nested structures. Further, the deep span representations are well structured and easily separable in the feature space.

pdf bib
Stylized Dialogue Generation with Feature-Guided Knowledge Augmentation
Jinpeng Li | Zekai Zhang | Xiuying Chen | Dongyan Zhao | Rui Yan
Findings of the Association for Computational Linguistics: EMNLP 2023

Stylized dialogue generation systems aim to produce coherent and context-aware dialogues while effectively emulating the desired style. Generating stylized dialogue is valuable yet challenging due to the scarce parallel data. Existing methods often synthesize pseudo data through back translation, yet suffer from noisy and context-agnostic style signals caused by insufficient guidance on target style features. To address this, we propose the knowledge-augmented stylized dialogue generation model, which includes a feature-guided style knowledge selection module that utilizes context and response features. Specifically, we retrieve dialogue-related style sentences from style corpus to explicitly provide clear style signals. We design a feature-guided selection module with response-related contrastive learning and style responsiveness Kullback-Leibler losses to enhance generation at both semantic and stylized levels. Our approach demonstrates satisfactory performance on two public stylized dialogue benchmarks in both automatic and human evaluations.

2022

pdf bib
Boundary Smoothing for Named Entity Recognition
Enwei Zhu | Jinpeng Li
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Neural named entity recognition (NER) models may easily encounter the over-confidence issue, which degrades the performance and calibration. Inspired by label smoothing and driven by the ambiguity of boundary annotation in NER engineering, we propose boundary smoothing as a regularization technique for span-based neural NER models. It re-assigns entity probabilities from annotated spans to the surrounding ones. Built on a simple but strong baseline, our model achieves results better than or competitive with previous state-of-the-art systems on eight well-known NER benchmarks. Further empirical analysis suggests that boundary smoothing effectively mitigates over-confidence, improves model calibration, and brings flatter neural minima and more smoothed loss landscapes.