Jinpeng Yang


2023

pdf bib
基于端到端预训练模型的藏文生成式文本摘要(Abstractive Summarization of Tibetan Based on end-to-end Pre-trained Model)
Shuo Huang (黄硕) | Xiaodong Yan (闫晓东) | Xinpeng OuYang (欧阳新鹏) | Jinpeng Yang (杨金鹏)
Proceedings of the 22nd Chinese National Conference on Computational Linguistics

“近年来,预训练语言模型受到了广泛的关注,这些模型极大地促进了自然语言处理在不同下游任务中的应用。文本摘要作为自然语言处理中的一个重要分支,可以有效的减少冗余信息,从而提高浏览文本速度。藏文作为低资源语言,缺乏用于大规模的训练语料,藏文生成式文本摘要研究还处于起步阶段,为了解决藏文生成式文本摘要的问题,本文首次提出将端到端的预训练语言模型CMPT(Chinese Minority Pre-Trained Language Model)用于藏文生成式文本摘要研究,CMPT模型通过对其他不同低资源语言文本进行去噪和对比学习,同时为了提高编码器的理解能力,在编码器的输出层增加一个单层掩码语言模型(MLM)解码器,进行Seq2Seq的生成和理解的联合预训练。通过进一步微调可以有效地提高在藏文文本摘要任务上的性能。为了验证模型的性能,我们在自己构建的5w条藏文文本摘要数据集和公开数据集Ti-SUM上进行实验,在两个数据集上的实验表明,我们提出的方法在藏文生成式文本摘要的评测指标上有显著提升。同时,该方法不仅可以应用于藏文文本摘要任务,也可以拓展到其他语言的文本摘要任务中,具有较好的推广价值。”