Jinsong Su


2023

pdf bib
OpenFact: Factuality Enhanced Open Knowledge Extraction
Linfeng Song | Ante Wang | Xiaoman Pan | Hongming Zhang | Dian Yu | Lifeng Jin | Haitao Mi | Jinsong Su | Yue Zhang | Dong Yu
Transactions of the Association for Computational Linguistics, Volume 11

We focus on the factuality property during the extraction of an OpenIE corpus named OpenFact, which contains more than 12 million high-quality knowledge triplets. We break down the factuality property into two important aspects—expressiveness and groundedness—and we propose a comprehensive framework to handle both aspects. To enhance expressiveness, we formulate each knowledge piece in OpenFact based on a semantic frame. We also design templates, extra constraints, and adopt human efforts so that most OpenFact triplets contain enough details. For groundedness, we require the main arguments of each triplet to contain linked Wikidata1 entities. A human evaluation suggests that the OpenFact triplets are much more accurate and contain denser information compared to OPIEC-Linked (Gashteovski et al., 2019), one recent high-quality OpenIE corpus grounded to Wikidata. Further experiments on knowledge base completion and knowledge base question answering show the effectiveness of OpenFact over OPIEC-Linked as supplementary knowledge to Wikidata as the major KG.

pdf bib
The Xiaomi AI Lab’s Speech Translation Systems for IWSLT 2023 Offline Task, Simultaneous Task and Speech-to-Speech Task
Wuwei Huang | Mengge Liu | Xiang Li | Yanzhi Tian | Fengyu Yang | Wen Zhang | Jian Luan | Bin Wang | Yuhang Guo | Jinsong Su
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)

This system description paper introduces the systems submitted by Xiaomi AI Lab to the three tracks of the IWSLT 2023 Evaluation Campaign, namely the offline speech translation (Offline-ST) track, the offline speech-to-speech translation (Offline-S2ST) track, and the simultaneous speech translation (Simul-ST) track. All our submissions for these three tracks only involve the English-Chinese language direction. Our English-Chinese speech translation systems are constructed using large-scale pre-trained models as the foundation. Specifically, we fine-tune these models’ corresponding components for various downstream speech translation tasks. Moreover, we implement several popular techniques, such as data filtering, data augmentation, speech segmentation, and model ensemble, to improve the system’s overall performance. Extensive experiments show that our systems achieve a significant improvement over the strong baseline systems in terms of the automatic evaluation metric.

pdf bib
A Sequence-to-Sequence&Set Model for Text-to-Table Generation
Tong Li | Zhihao Wang | Liangying Shao | Xuling Zheng | Xiaoli Wang | Jinsong Su
Findings of the Association for Computational Linguistics: ACL 2023

Recently, the text-to-table generation task has attracted increasing attention due to its wide applications. In this aspect, the dominant model formalizes this task as a sequence-to-sequence generation task and serializes each table into a token sequence during training by concatenating all rows in a top-down order. However, it suffers from two serious defects: 1) the predefined order introduces a wrong bias during training, which highly penalizes shifts in the order between rows; 2) the error propagation problem becomes serious when the model outputs a long token sequence. In this paper, we first conduct a preliminary study to demonstrate the generation of most rows is order-insensitive. Furthermore, we propose a novel sequence-to-sequence&set text-to-table generation model. Specifically, in addition to a text encoder encoding the input text, our model is equipped with a table header generator to first output a table header, i.e., the first row of the table, in the manner of sequence generation. Then we use a table body generator with learnable row embeddings and column embeddings to generate a set of table body rows in parallel. Particularly, to deal with the issue that there is no correspondence between each generated table body row and target during training, we propose a target assignment strategy based on the bipartite matching between the first cells of generated table body rows and targets. Experiment results show that our model significantly surpasses the baselines, achieving state-of-the-art performance on commonly-used datasets.

pdf bib
BigVideo: A Large-scale Video Subtitle Translation Dataset for Multimodal Machine Translation
Liyan Kang | Luyang Huang | Ningxin Peng | Peihao Zhu | Zewei Sun | Shanbo Cheng | Mingxuan Wang | Degen Huang | Jinsong Su
Findings of the Association for Computational Linguistics: ACL 2023

We present a large-scale video subtitle translation dataset, *BigVideo*, to facilitate the study of multi-modality machine translation. Compared with the widely used *How2* and *VaTeX* datasets, *BigVideo* is more than 10 times larger, consisting of 4.5 million sentence pairs and 9,981 hours of videos. We also introduce two deliberately designed test sets to verify the necessity of visual information: *Ambiguous* with the presence of ambiguous words, and *Unambiguous* in which the text context is self-contained for translation. To better model the common semantics shared across texts and videos, we introduce a contrastive learning method in the cross-modal encoder. Extensive experiments on the *BigVideo* shows that: a) Visual information consistently improves the NMT model in terms of BLEU, BLEURT and COMET on both Ambiguous and Unambiguous test sets. b) Visual information helps disambiguation, compared to the strong text baseline on terminology-targeted scores and human evaluation.

pdf bib
RC3: Regularized Contrastive Cross-lingual Cross-modal Pre-training
Chulun Zhou | Yunlong Liang | Fandong Meng | Jinan Xu | Jinsong Su | Jie Zhou
Findings of the Association for Computational Linguistics: ACL 2023

Multilingual vision-language (V&L) pre-training has achieved remarkable progress in learning universal representations across different modalities and languages. In spite of recent success, there still remain challenges limiting further improvements of V&L pre-trained models in multilingual settings. Particularly, current V&L pre-training methods rely heavily on strictly-aligned multilingual image-text pairs generated from English-centric datasets through machine translation. However, the cost of collecting and translating such strictly-aligned datasets is usually unbearable. In this paper, we propose Regularized Contrastive Cross-lingual Cross-modal (RC3) pre-training, which further exploits more abundant weakly-aligned multilingual image-text pairs. Specifically, we design a regularized cross-lingual visio-textual contrastive learning objective that constrains the representation proximity of weakly-aligned visio-textual inputs according to textual relevance. Besides, existing V&L pre-training approaches mainly deal with visual inputs by either region-of-interest (ROI) features or patch embeddings. We flexibly integrate the two forms of visual features into our model for pre-training and downstream multi-modal tasks. Extensive experiments on 5 downstream multi-modal tasks across 6 languages demonstrate the effectiveness of our proposed method over competitive contrast models with strong zero-shot capability.

pdf bib
Revisiting Non-Autoregressive Translation at Scale
Zhihao Wang | Longyue Wang | Jinsong Su | Junfeng Yao | Zhaopeng Tu
Findings of the Association for Computational Linguistics: ACL 2023

In real-world systems, scaling has been critical for improving the translation quality in autoregressive translation (AT), which however has not been well studied for non-autoregressive translation (NAT). In this work, we bridge the gap by systematically studying the impact of scaling on NAT behaviors. Extensive experiments on six WMT benchmarks over two advanced NAT models show that scaling can alleviate the commonly-cited weaknesses of NAT models, resulting in better translation performance. To reduce the side-effect of scaling on decoding speed, we empirically investigate the impact of NAT encoder and decoder on the translation performance. Experimental results on the large-scale WMT20 En-De show that the asymmetric architecture (e.g. bigger encoder and smaller decoder) can achieve comparable performance with the scaling model, while maintaining the superiority of decoding speed with standard NAT models. To this end, we establish a new benchmark by validating scaled NAT models on the scaled dataset, which can be regarded as a strong baseline for future works. We release code and system outputs at https://github.com/DeepLearnXMU/Scaling4NAT.

pdf bib
Exploring Better Text Image Translation with Multimodal Codebook
Zhibin Lan | Jiawei Yu | Xiang Li | Wen Zhang | Jian Luan | Bin Wang | Degen Huang | Jinsong Su
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Text image translation (TIT) aims to translate the source texts embedded in the image to target translations, which has a wide range of applications and thus has important research value. However, current studies on TIT are confronted with two main bottlenecks: 1) this task lacks a publicly available TIT dataset, 2) dominant models are constructed in a cascaded manner, which tends to suffer from the error propagation of optical character recognition (OCR). In this work, we first annotate a Chinese-English TIT dataset named OCRMT30K, providing convenience for subsequent studies. Then, we propose a TIT model with a multimodal codebook, which is able to associate the image with relevant texts, providing useful supplementary information for translation. Moreover, we present a multi-stage training framework involving text machine translation, image-text alignment, and TIT tasks, which fully exploits additional bilingual texts, OCR dataset and our OCRMT30K dataset to train our model. Extensive experiments and in-depth analyses strongly demonstrate the effectiveness of our proposed model and training framework.

pdf bib
Bridging the Domain Gaps in Context Representations for k-Nearest Neighbor Neural Machine Translation
Zhiwei Cao | Baosong Yang | Huan Lin | Suhang Wu | Xiangpeng Wei | Dayiheng Liu | Jun Xie | Min Zhang | Jinsong Su
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

k-Nearest neighbor machine translation (kNN-MT) has attracted increasing attention due to its ability to non-parametrically adapt to new translation domains. By using an upstream NMT model to traverse the downstream training corpus, it is equipped with a datastore containing vectorized key-value pairs, which are retrieved during inference to benefit translation.However, there often exists a significant gap between upstream and downstream domains, which hurts the datastore retrieval and the final translation quality.To deal with this issue, we propose a novel approach to boost the datastore retrieval of kNN-MT by reconstructing the original datastore.Concretely, we design a reviser to revise the key representations, making them better fit for the downstream domain. The reviser is trained using the collected semantically-related key-queries pairs, and optimized by two proposed losses: one is the key-queries semantic distance ensuring each revised key representation is semantically related to its corresponding queries, and the other is an L2-norm loss encouraging revised key representations to effectively retain the knowledge learned by the upstream NMT model. Extensive experiments on domain adaptation tasks demonstrate that our method can effectively boost the datastore retrieval and translation quality of kNN-MT.Our code is available at https://github.com/DeepLearnXMU/Revised-knn-mt.

2022

pdf bib
Towards Robust Neural Machine Translation with Iterative Scheduled Data-Switch Training
Zhongjian Miao | Xiang Li | Liyan Kang | Wen Zhang | Chulun Zhou | Yidong Chen | Bin Wang | Min Zhang | Jinsong Su
Proceedings of the 29th International Conference on Computational Linguistics

Most existing methods on robust neural machine translation (NMT) construct adversarial examples by injecting noise into authentic examples and indiscriminately exploit two types of examples. They require the model to translate both the authentic source sentence and its adversarial counterpart into the identical target sentence within the same training stage, which may be a suboptimal choice to achieve robust NMT. In this paper, we first conduct a preliminary study to confirm this claim and further propose an Iterative Scheduled Data-switch Training Framework to mitigate this problem. Specifically, we introduce two training stages, iteratively switching between authentic and adversarial examples. Compared with previous studies, our model focuses more on just one type of examples at each single stage, which can better exploit authentic and adversarial examples, and thus obtaining a better robust NMT model. Moreover, we introduce an improved curriculum learning method with a sampling strategy to better schedule the process of noise injection. Experimental results show that our model significantly surpasses several competitive baselines on four translation benchmarks. Our source code is available at https://github.com/DeepLearnXMU/RobustNMT-ISDST.

pdf bib
A Variational Hierarchical Model for Neural Cross-Lingual Summarization
Yunlong Liang | Fandong Meng | Chulun Zhou | Jinan Xu | Yufeng Chen | Jinsong Su | Jie Zhou
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The goal of the cross-lingual summarization (CLS) is to convert a document in one language (e.g., English) to a summary in another one (e.g., Chinese). The CLS task is essentially the combination of machine translation (MT) and monolingual summarization (MS), and thus there exists the hierarchical relationship between MT&MS and CLS. Existing studies on CLS mainly focus on utilizing pipeline methods or jointly training an end-to-end model through an auxiliary MT or MS objective. However, it is very challenging for the model to directly conduct CLS as it requires both the abilities to translate and summarize. To address this issue, we propose a hierarchical model for the CLS task, based on the conditional variational auto-encoder. The hierarchical model contains two kinds of latent variables at the local and global levels, respectively. At the local level, there are two latent variables, one for translation and the other for summarization. As for the global level, there is another latent variable for cross-lingual summarization conditioned on the two local-level variables. Experiments on two language directions (English-Chinese) verify the effectiveness and superiority of the proposed approach. In addition, we show that our model is able to generate better cross-lingual summaries than comparison models in the few-shot setting.

pdf bib
Confidence Based Bidirectional Global Context Aware Training Framework for Neural Machine Translation
Chulun Zhou | Fandong Meng | Jie Zhou | Min Zhang | Hongji Wang | Jinsong Su
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Most dominant neural machine translation (NMT) models are restricted to make predictions only according to the local context of preceding words in a left-to-right manner. Although many previous studies try to incorporate global information into NMT models, there still exist limitations on how to effectively exploit bidirectional global context. In this paper, we propose a Confidence Based Bidirectional Global Context Aware (CBBGCA) training framework for NMT, where the NMT model is jointly trained with an auxiliary conditional masked language model (CMLM). The training consists of two stages: (1) multi-task joint training; (2) confidence based knowledge distillation. At the first stage, by sharing encoder parameters, the NMT model is additionally supervised by the signal from the CMLM decoder that contains bidirectional global contexts. Moreover, at the second stage, using the CMLM as teacher, we further pertinently incorporate bidirectional global context to the NMT model on its unconfidently-predicted target words via knowledge distillation. Experimental results show that our proposed CBBGCA training framework significantly improves the NMT model by +1.02, +1.30 and +0.57 BLEU scores on three large-scale translation datasets, namely WMT’14 English-to-German, WMT’19 Chinese-to-English and WMT’14 English-to-French, respectively.

pdf bib
Type-Driven Multi-Turn Corrections for Grammatical Error Correction
Shaopeng Lai | Qingyu Zhou | Jiali Zeng | Zhongli Li | Chao Li | Yunbo Cao | Jinsong Su
Findings of the Association for Computational Linguistics: ACL 2022

Grammatical Error Correction (GEC) aims to automatically detect and correct grammatical errors. In this aspect, dominant models are trained by one-iteration learning while performing multiple iterations of corrections during inference. Previous studies mainly focus on the data augmentation approach to combat the exposure bias, which suffers from two drawbacks. First, they simply mix additionally-constructed training instances and original ones to train models, which fails to help models be explicitly aware of the procedure of gradual corrections. Second, they ignore the interdependence between different types of corrections. In this paper, we propose a Type-Driven Multi-Turn Corrections approach for GEC. Using this approach, from each training instance, we additionally construct multiple training instances, each of which involves the correction of a specific type of errors. Then, we use these additionally-constructed training instances and the original one to train the model in turn. Experimental results and in-depth analysis show that our approach significantly benefits the model training. Particularly, our enhanced model achieves state-of-the-art single-model performance on English GEC benchmarks. We release our code at Github.

pdf bib
Bridging the Gap between Training and Inference: Multi-Candidate Optimization for Diverse Neural Machine Translation
Huan Lin | Baosong Yang | Liang Yao | Dayiheng Liu | Haibo Zhang | Jun Xie | Min Zhang | Jinsong Su
Findings of the Association for Computational Linguistics: NAACL 2022

Diverse NMT aims at generating multiple diverse yet faithful translations given a source sentence. In this paper, we investigate a common shortcoming in existing diverse NMT studies: the model is usually trained with single reference, while expected to generate multiple candidate translations in inference. The discrepancy between training and inference enlarges the confidence variance and quality gap among candidate translations and thus hinders model performance. To deal with this defect, we propose a multi-candidate optimization framework for diverse NMT. Specifically, we define assessments to score the diversity and the quality of candidate translations during training, and optimize the diverse NMT model with two strategies based on reinforcement learning, namely hard constrained training and soft constrained training. We conduct experiments on NIST Chinese-English and WMT14 English-German translation tasks. The results illustrate that our framework is transparent to basic diverse NMT models, and universally makes better trade-off between diversity and quality. Our source codeis available at https://github.com/DeepLearnXMU/MultiCanOptim.

pdf bib
CLLE: A Benchmark for Continual Language Learning Evaluation in Multilingual Machine Translation
Han Zhang | Sheng Zhang | Yang Xiang | Bin Liang | Jinsong Su | Zhongjian Miao | Hui Wang | Ruifeng Xu
Findings of the Association for Computational Linguistics: EMNLP 2022

Continual Language Learning (CLL) in multilingual translation is inevitable when new languages are required to be translated. Due to the lack of unified and generalized benchmarks, the evaluation of existing methods is greatly influenced by experimental design which usually has a big gap from the industrial demands. In this work, we propose the first Continual Language Learning Evaluation benchmark CLLE in multilingual translation. CLLE consists of a Chinese-centric corpus — CN-25 and two CLL tasks — the close-distance language continual learning task and the language family continual learning task designed for real and disparate demands. Different from existing translation benchmarks, CLLE considers several restrictions for CLL, including domain distribution alignment, content overlap, language diversity, and the balance of corpus. Furthermore, we propose a novel framework COMETA based on Constrained Optimization and META-learning to alleviate catastrophic forgetting and dependency on history training data by using a meta-model to retain the important parameters for old languages. Our experiments prove that CLLE is a challenging CLL benchmark and that our proposed method is effective when compared with other strong baselines. Due to the construction of the corpus, the task designing and the evaluation method are independent of the centric language, we also construct and release the English-centric corpus EN-25 to facilitate academic research.

pdf bib
Getting the Most out of Simile Recognition
Xiaoyue Wang | Linfeng Song | Xin Liu | Chulun Zhou | Hualin Zeng | Jinsong Su
Findings of the Association for Computational Linguistics: EMNLP 2022

Simile recognition involves two subtasks: simile sentence classification that discriminates whether a sentence contains simile, and simile component extraction that locates the corresponding objects (i.e., tenors and vehicles).Recent work ignores features other than surface strings and suffers from the data hunger issue. We explore expressive features for this task to help achieve more effective data utilization. In particular, we study two types of features: 1) input-side features that include POS tags, dependency trees and word definitions, and 2) decoding features that capture the interdependence among various decoding decisions. We further construct a model named HGSR, which merges the input-side features as a heterogeneous graph and leverages decoding features via distillation. Experiments show that HGSR significantly outperforms the current state-of-the-art systems and carefully designed baselines, verifying the effectiveness of introduced features. We will release our code upon paper acceptance.

pdf bib
Sentiment-Aware Word and Sentence Level Pre-training for Sentiment Analysis
Shuai Fan | Chen Lin | Haonan Li | Zhenghao Lin | Jinsong Su | Hang Zhang | Yeyun Gong | JIan Guo | Nan Duan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Most existing pre-trained language representation models (PLMs) are sub-optimal in sentiment analysis tasks, as they capture the sentiment information from word-level while under-considering sentence-level information. In this paper, we propose SentiWSP, a novel Sentiment-aware pre-trained language model with combined Word-level and Sentence-level Pre-training tasks. The word level pre-training task detects replaced sentiment words, via a generator-discriminator framework, to enhance the PLM’s knowledge about sentiment words. The sentence level pre-training task further strengthens the discriminator via a contrastive learning framework, with similar sentences as negative samples, to encode sentiments in a sentence. Extensive experimental results show that SentiWSP achieves new state-of-the-art performance on various sentence-level and aspect-level sentiment classification benchmarks. We have made our code and model publicly available at https://github.com/XMUDM/SentiWSP.

pdf bib
Towards Robust k-Nearest-Neighbor Machine Translation
Hui Jiang | Ziyao Lu | Fandong Meng | Chulun Zhou | Jie Zhou | Degen Huang | Jinsong Su
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

k-Nearest-Neighbor Machine Translation (kNN-MT) becomes an important research direction of NMT in recent years. Its main idea is to retrieve useful key-value pairs from an additional datastore to modify translations without updating the NMT model. However, the underlying retrieved noisy pairs will dramatically deteriorate the model performance. In this paper, we conduct a preliminary study and find that this problem results from not fully exploiting the prediction of the NMT model. To alleviate the impact of noise, we propose a confidence-enhanced kNN-MT model with robust training. Concretely, we introduce the NMT confidence to refine the modeling of two important components of kNN-MT: kNN distribution and the interpolation weight. Meanwhile we inject two types of perturbations into the retrieved pairs for robust training. Experimental results on four benchmark datasets demonstrate that our model not only achieves significant improvements over current kNN-MT models, but also exhibits better robustness. Our code is available at https://github.com/DeepLearnXMU/Robust-knn-mt.

pdf bib
WR-One2Set: Towards Well-Calibrated Keyphrase Generation
Binbin Xie | Xiangpeng Wei | Baosong Yang | Huan Lin | Jun Xie | Xiaoli Wang | Min Zhang | Jinsong Su
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Keyphrase generation aims to automatically generate short phrases summarizing an input document. The recently emerged ONE2SET paradigm (Ye et al., 2021) generates keyphrases as a set and has achieved competitive performance. Nevertheless, we observe serious calibration errors outputted by ONE2SET, especially in the over-estimation of ∅ token (means “no corresponding keyphrase”). In this paper, we deeply analyze this limitation and identify two main reasons behind: 1) the parallel generation has to introduce excessive ∅ as padding tokens into training instances; and 2) the training mechanism assigning target to each slot is unstable and further aggravates the ∅ token over-estimation. To make the model well-calibrated, we propose WR-ONE2SET which extends ONE2SET with an adaptive instance-level cost Weighting strategy and a target Re-assignment mechanism. The former dynamically penalizes the over-estimated slots for different instances thus smoothing the uneven training distribution. The latter refines the original inappropriate assignment and reduces the supervisory signals of over-estimated slots. Experimental results on commonly-used datasets demonstrate the effectiveness and generality of our proposed paradigm.

pdf bib
Towards Better Document-level Relation Extraction via Iterative Inference
Liang Zhang | Jinsong Su | Yidong Chen | Zhongjian Miao | Min Zijun | Qingguo Hu | Xiaodong Shi
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Document-level relation extraction (RE) aims to extract the relations between entities from the input document that usually containing many difficultly-predicted entity pairs whose relations can only be predicted through relational inference. Existing methods usually directly predict the relations of all entity pairs of input document in a one-pass manner, ignoring the fact that predictions of some entity pairs heavily depend on the predicted results of other pairs. To deal with this issue, in this paper, we propose a novel document-level RE model with iterative inference. Our model is mainly composed of two modules: 1) a base module expected to provide preliminary relation predictions on entity pairs; 2) an inference module introduced to refine these preliminary predictions by iteratively dealing with difficultly-predicted entity pairs depending on other pairs in an easy-to-hard manner. Unlike previous methods which only consider feature information of entity pairs, our inference module is equipped with two Extended Cross Attention units, allowing it to exploit both feature information and previous predictions of entity pairs during relational inference. Furthermore, we adopt a two-stage strategy to train our model. At the first stage, we only train our base module. During the second stage, we train the whole model, where contrastive learning is introduced to enhance the training of inference module. Experimental results on three commonly-used datasets show that our model consistently outperforms other competitive baselines.

pdf bib
Adaptive Token-level Cross-lingual Feature Mixing for Multilingual Neural Machine Translation
Junpeng Liu | Kaiyu Huang | Jiuyi Li | Huan Liu | Jinsong Su | Degen Huang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Multilingual neural machine translation aims to translate multiple language pairs in a single model and has shown great success thanks to the knowledge transfer across languages with the shared parameters. Despite promising, this share-all paradigm suffers from insufficient ability to capture language-specific features. Currently, the common practice is to insert or search language-specific networks to balance the shared and specific features. However, those two types of features are not sufficient enough to model the complex commonality and divergence across languages, such as the locally shared features among similar languages, which leads to sub-optimal transfer, especially in massively multilingual translation. In this paper, we propose a novel token-level feature mixing method that enables the model to capture different features and dynamically determine the feature sharing across languages. Based on the observation that the tokens in the multilingual model are usually shared by different languages, we we insert a feature mixing layer into each Transformer sublayer and model each token representation as a mix of different features, with a proportion indicating its feature preference. In this way, we can perform fine-grained feature sharing and achieve better multilingual transfer. Experimental results on multilingual datasets show that our method outperforms various strong baselines and can be extended to zero-shot translation. Further analyses reveal that our method can capture different linguistic features and bridge the representation gap across languages.

2021

pdf bib
Enhancing Chinese Word Segmentation via Pseudo Labels for Practicability
Kaiyu Huang | Junpeng Liu | Degen Huang | Deyi Xiong | Zhuang Liu | Jinsong Su
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
BACO: A Background Knowledge- and Content-Based Framework for Citing Sentence Generation
Yubin Ge | Ly Dinh | Xiaofeng Liu | Jinsong Su | Ziyao Lu | Ante Wang | Jana Diesner
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In this paper, we focus on the problem of citing sentence generation, which entails generating a short text to capture the salient information in a cited paper and the connection between the citing and cited paper. We present BACO, a BAckground knowledge- and COntent-based framework for citing sentence generation, which considers two types of information: (1) background knowledge by leveraging structural information from a citation network; and (2) content, which represents in-depth information about what to cite and why to cite. First, a citation network is encoded to provide background knowledge. Second, we apply salience estimation to identify what to cite by estimating the importance of sentences in the cited paper. During the decoding stage, both types of information are combined to facilitate the text generation, and then we conduct a joint training for the generator and citation function classification to make the model aware of why to cite. Our experimental results show that our framework outperforms comparative baselines.

pdf bib
Towards User-Driven Neural Machine Translation
Huan Lin | Liang Yao | Baosong Yang | Dayiheng Liu | Haibo Zhang | Weihua Luo | Degen Huang | Jinsong Su
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

A good translation should not only translate the original content semantically, but also incarnate personal traits of the original text. For a real-world neural machine translation (NMT) system, these user traits (e.g., topic preference, stylistic characteristics and expression habits) can be preserved in user behavior (e.g., historical inputs). However, current NMT systems marginally consider the user behavior due to: 1) the difficulty of modeling user portraits in zero-shot scenarios, and 2) the lack of user-behavior annotated parallel dataset. To fill this gap, we introduce a novel framework called user-driven NMT. Specifically, a cache-based module and a user-driven contrastive learning method are proposed to offer NMT the ability to capture potential user traits from their historical inputs under a zero-shot learning fashion. Furthermore, we contribute the first Chinese-English parallel corpus annotated with user behavior called UDT-Corpus. Experimental results confirm that the proposed user-driven NMT can generate user-specific translations.

pdf bib
Exploring Dynamic Selection of Branch Expansion Orders for Code Generation
Hui Jiang | Chulun Zhou | Fandong Meng | Biao Zhang | Jie Zhou | Degen Huang | Qingqiang Wu | Jinsong Su
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Due to the great potential in facilitating software development, code generation has attracted increasing attention recently. Generally, dominant models are Seq2Tree models, which convert the input natural language description into a sequence of tree-construction actions corresponding to the pre-order traversal of an Abstract Syntax Tree (AST). However, such a traversal order may not be suitable for handling all multi-branch nodes. In this paper, we propose to equip the Seq2Tree model with a context-based Branch Selector, which is able to dynamically determine optimal expansion orders of branches for multi-branch nodes. Particularly, since the selection of expansion orders is a non-differentiable multi-step operation, we optimize the selector through reinforcement learning, and formulate the reward function as the difference of model losses obtained through different expansion orders. Experimental results and in-depth analysis on several commonly-used datasets demonstrate the effectiveness and generality of our approach. We have released our code at https://github.com/DeepLearnXMU/CG-RL.

pdf bib
Bridging Subword Gaps in Pretrain-Finetune Paradigm for Natural Language Generation
Xin Liu | Baosong Yang | Dayiheng Liu | Haibo Zhang | Weihua Luo | Min Zhang | Haiying Zhang | Jinsong Su
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

A well-known limitation in pretrain-finetune paradigm lies in its inflexibility caused by the one-size-fits-all vocabulary. This potentially weakens the effect when applying pretrained models into natural language generation (NLG) tasks, especially for the subword distributions between upstream and downstream tasks with significant discrepancy. Towards approaching this problem, we extend the vanilla pretrain-finetune pipeline with an extra embedding transfer step. Specifically, a plug-and-play embedding generator is introduced to produce the representation of any input token, according to pre-trained embeddings of its morphologically similar ones. Thus, embeddings of mismatch tokens in downstream tasks can also be efficiently initialized. We conduct experiments on a variety of NLG tasks under the pretrain-finetune fashion. Experimental results and extensive analyses show that the proposed strategy offers us opportunities to feel free to transfer the vocabulary, leading to more efficient and better performed downstream NLG models.

pdf bib
Towards Making the Most of Dialogue Characteristics for Neural Chat Translation
Yunlong Liang | Chulun Zhou | Fandong Meng | Jinan Xu | Yufeng Chen | Jinsong Su | Jie Zhou
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Neural Chat Translation (NCT) aims to translate conversational text between speakers of different languages. Despite the promising performance of sentence-level and context-aware neural machine translation models, there still remain limitations in current NCT models because the inherent dialogue characteristics of chat, such as dialogue coherence and speaker personality, are neglected. In this paper, we propose to promote the chat translation by introducing the modeling of dialogue characteristics into the NCT model. To this end, we design four auxiliary tasks including monolingual response generation, cross-lingual response generation, next utterance discrimination, and speaker identification. Together with the main chat translation task, we optimize the enhanced NCT model through the training objectives of all these tasks. By this means, the NCT model can be enhanced by capturing the inherent dialogue characteristics, thus generating more coherent and speaker-relevant translations. Comprehensive experiments on four language directions (English<->German and English<->Chinese) verify the effectiveness and superiority of the proposed approach.

pdf bib
Improving Graph-based Sentence Ordering with Iteratively Predicted Pairwise Orderings
Shaopeng Lai | Ante Wang | Fandong Meng | Jie Zhou | Yubin Ge | Jiali Zeng | Junfeng Yao | Degen Huang | Jinsong Su
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Dominant sentence ordering models can be classified into pairwise ordering models and set-to-sequence models. However, there is little attempt to combine these two types of models, which inituitively possess complementary advantages. In this paper, we propose a novel sentence ordering framework which introduces two classifiers to make better use of pairwise orderings for graph-based sentence ordering (Yin et al. 2019, 2021). Specially, given an initial sentence-entity graph, we first introduce a graph-based classifier to predict pairwise orderings between linked sentences. Then, in an iterative manner, based on the graph updated by previously predicted high-confident pairwise orderings, another classifier is used to predict the remaining uncertain pairwise orderings. At last, we adapt a GRN-based sentence ordering model (Yin et al. 2019, 2021) on the basis of final graph. Experiments on five commonly-used datasets demonstrate the effectiveness and generality of our model. Particularly, when equipped with BERT (Devlin et al. 2019) and FHDecoder (Yin et al. 2020), our model achieves state-of-the-art performance. Our code is available at https://github.com/DeepLearnXMU/IRSEG.

2020

pdf bib
A Novel Graph-based Multi-modal Fusion Encoder for Neural Machine Translation
Yongjing Yin | Fandong Meng | Jinsong Su | Chulun Zhou | Zhengyuan Yang | Jie Zhou | Jiebo Luo
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Multi-modal neural machine translation (NMT) aims to translate source sentences into a target language paired with images. However, dominant multi-modal NMT models do not fully exploit fine-grained semantic correspondences between semantic units of different modalities, which have potential to refine multi-modal representation learning. To deal with this issue, in this paper, we propose a novel graph-based multi-modal fusion encoder for NMT. Specifically, we first represent the input sentence and image using a unified multi-modal graph, which captures various semantic relationships between multi-modal semantic units (words and visual objects). We then stack multiple graph-based multi-modal fusion layers that iteratively perform semantic interactions to learn node representations. Finally, these representations provide an attention-based context vector for the decoder. We evaluate our proposed encoder on the Multi30K datasets. Experimental results and in-depth analysis show the superiority of our multi-modal NMT model.

pdf bib
Exploring Contextual Word-level Style Relevance for Unsupervised Style Transfer
Chulun Zhou | Liangyu Chen | Jiachen Liu | Xinyan Xiao | Jinsong Su | Sheng Guo | Hua Wu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Unsupervised style transfer aims to change the style of an input sentence while preserving its original content without using parallel training data. In current dominant approaches, owing to the lack of fine-grained control on the influence from the target style, they are unable to yield desirable output sentences. In this paper, we propose a novel attentional sequence-to-sequence (Seq2seq) model that dynamically exploits the relevance of each output word to the target style for unsupervised style transfer. Specifically, we first pretrain a style classifier, where the relevance of each input word to the original style can be quantified via layer-wise relevance propagation. In a denoising auto-encoding manner, we train an attentional Seq2seq model to reconstruct input sentences and repredict word-level previously-quantified style relevance simultaneously. In this way, this model is endowed with the ability to automatically predict the style relevance of each output word. Then, we equip the decoder of this model with a neural style component to exploit the predicted wordlevel style relevance for better style transfer. Particularly, we fine-tune this model using a carefully-designed objective function involving style transfer, style relevance consistency, content preservation and fluency modeling loss terms. Experimental results show that our proposed model achieves state-of-the-art performance in terms of both transfer accuracy and content preservation.

pdf bib
Structural Information Preserving for Graph-to-Text Generation
Linfeng Song | Ante Wang | Jinsong Su | Yue Zhang | Kun Xu | Yubin Ge | Dong Yu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The task of graph-to-text generation aims at producing sentences that preserve the meaning of input graphs. As a crucial defect, the current state-of-the-art models may mess up or even drop the core structural information of input graphs when generating outputs. We propose to tackle this problem by leveraging richer training signals that can guide our model for preserving input information. In particular, we introduce two types of autoencoding losses, each individually focusing on different aspects (a.k.a. views) of input graphs. The losses are then back-propagated to better calibrate our model via multi-task training. Experiments on two benchmarks for graph-to-text generation show the effectiveness of our approach over a state-of-the-art baseline.

pdf bib
Modeling Discourse Structure for Document-level Neural Machine Translation
Junxuan Chen | Xiang Li | Jiarui Zhang | Chulun Zhou | Jianwei Cui | Bin Wang | Jinsong Su
Proceedings of the First Workshop on Automatic Simultaneous Translation

Recently, document-level neural machine translation (NMT) has become a hot topic in the community of machine translation. Despite its success, most of existing studies ignored the discourse structure information of the input document to be translated, which has shown effective in other tasks. In this paper, we propose to improve document-level NMT with the aid of discourse structure information. Our encoder is based on a hierarchical attention network (HAN) (Miculicich et al., 2018). Specifically, we first parse the input document to obtain its discourse structure. Then, we introduce a Transformer-based path encoder to embed the discourse structure information of each word. Finally, we combine the discourse structure information with the word embedding before it is fed into the encoder. Experimental results on the English-to-German dataset show that our model can significantly outperform both Transformer and Transformer+HAN.

2019

pdf bib
Leveraging Dependency Forest for Neural Medical Relation Extraction
Linfeng Song | Yue Zhang | Daniel Gildea | Mo Yu | Zhiguo Wang | Jinsong Su
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Medical relation extraction discovers relations between entity mentions in text, such as research articles. For this task, dependency syntax has been recognized as a crucial source of features. Yet in the medical domain, 1-best parse trees suffer from relatively low accuracies, diminishing their usefulness. We investigate a method to alleviate this problem by utilizing dependency forests. Forests contain more than one possible decisions and therefore have higher recall but more noise compared with 1-best outputs. A graph neural network is used to represent the forests, automatically distinguishing the useful syntactic information from parsing noise. Results on two benchmarks show that our method outperforms the standard tree-based methods, giving the state-of-the-art results in the literature.

pdf bib
Towards Linear Time Neural Machine Translation with Capsule Networks
Mingxuan Wang | Jun Xie | Zhixing Tan | Jinsong Su | Deyi Xiong | Lei Li
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

In this study, we first investigate a novel capsule network with dynamic routing for linear time Neural Machine Translation (NMT), referred as CapsNMT. CapsNMT uses an aggregation mechanism to map the source sentence into a matrix with pre-determined size, and then applys a deep LSTM network to decode the target sequence from the source representation. Unlike the previous work (CITATION) to store the source sentence with a passive and bottom-up way, the dynamic routing policy encodes the source sentence with an iterative process to decide the credit attribution between nodes from lower and higher layers. CapsNMT has two core properties: it runs in time that is linear in the length of the sequences and provides a more flexible way to aggregate the part-whole information of the source sentence. On WMT14 English-German task and a larger WMT14 English-French task, CapsNMT achieves comparable results with the Transformer system. To the best of our knowledge, this is the first work that capsule networks have been empirically investigated for sequence to sequence problems.

pdf bib
Iterative Dual Domain Adaptation for Neural Machine Translation
Jiali Zeng | Yang Liu | Jinsong Su | Yubing Ge | Yaojie Lu | Yongjing Yin | Jiebo Luo
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Previous studies on the domain adaptation for neural machine translation (NMT) mainly focus on the one-pass transferring out-of-domain translation knowledge to in-domain NMT model. In this paper, we argue that such a strategy fails to fully extract the domain-shared translation knowledge, and repeatedly utilizing corpora of different domains can lead to better distillation of domain-shared translation knowledge. To this end, we propose an iterative dual domain adaptation framework for NMT. Specifically, we first pretrain in-domain and out-of-domain NMT models using their own training corpora respectively, and then iteratively perform bidirectional translation knowledge transfer (from in-domain to out-of-domain and then vice versa) based on knowledge distillation until the in-domain NMT model convergences. Furthermore, we extend the proposed framework to the scenario of multiple out-of-domain training corpora, where the above-mentioned transfer is performed sequentially between the in-domain and each out-of-domain NMT models in the ascending order of their domain similarities. Empirical results on Chinese-English and English-German translation tasks demonstrate the effectiveness of our framework.

pdf bib
Progressive Self-Supervised Attention Learning for Aspect-Level Sentiment Analysis
Jialong Tang | Ziyao Lu | Jinsong Su | Yubin Ge | Linfeng Song | Le Sun | Jiebo Luo
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In aspect-level sentiment classification (ASC), it is prevalent to equip dominant neural models with attention mechanisms, for the sake of acquiring the importance of each context word on the given aspect. However, such a mechanism tends to excessively focus on a few frequent words with sentiment polarities, while ignoring infrequent ones. In this paper, we propose a progressive self-supervised attention learning approach for neural ASC models, which automatically mines useful attention supervision information from a training corpus to refine attention mechanisms. Specifically, we iteratively conduct sentiment predictions on all training instances. Particularly, at each iteration, the context word with the maximum attention weight is extracted as the one with active/misleading influence on the correct/incorrect prediction of every instance, and then the word itself is masked for subsequent iterations. Finally, we augment the conventional training objective with a regularization term, which enables ASC models to continue equally focusing on the extracted active context words while decreasing weights of those misleading ones. Experimental results on multiple datasets show that our proposed approach yields better attention mechanisms, leading to substantial improvements over the two state-of-the-art neural ASC models. Source code and trained models are available at https://github.com/DeepLearnXMU/PSSAttention.

pdf bib
Semantic Neural Machine Translation Using AMR
Linfeng Song | Daniel Gildea | Yue Zhang | Zhiguo Wang | Jinsong Su
Transactions of the Association for Computational Linguistics, Volume 7

It is intuitive that semantic representations can be useful for machine translation, mainly because they can help in enforcing meaning preservation and handling data sparsity (many sentences correspond to one meaning) of machine translation models. On the other hand, little work has been done on leveraging semantics for neural machine translation (NMT). In this work, we study the usefulness of AMR (abstract meaning representation) on NMT. Experiments on a standard English-to-German dataset show that incorporating AMR as additional knowledge can significantly improve a strong attention-based sequence-to-sequence neural translation model.

2018

pdf bib
Multi-Domain Neural Machine Translation with Word-Level Domain Context Discrimination
Jiali Zeng | Jinsong Su | Huating Wen | Yang Liu | Jun Xie | Yongjing Yin | Jianqiang Zhao
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

With great practical value, the study of Multi-domain Neural Machine Translation (NMT) mainly focuses on using mixed-domain parallel sentences to construct a unified model that allows translation to switch between different domains. Intuitively, words in a sentence are related to its domain to varying degrees, so that they will exert disparate impacts on the multi-domain NMT modeling. Based on this intuition, in this paper, we devote to distinguishing and exploiting word-level domain contexts for multi-domain NMT. To this end, we jointly model NMT with monolingual attention-based domain classification tasks and improve NMT as follows: 1) Based on the sentence representations produced by a domain classifier and an adversarial domain classifier, we generate two gating vectors and use them to construct domain-specific and domain-shared annotations, for later translation predictions via different attention models; 2) We utilize the attention weights derived from target-side domain classifier to adjust the weights of target words in the training objective, enabling domain-related words to have greater impacts during model training. Experimental results on Chinese-English and English-French multi-domain translation tasks demonstrate the effectiveness of the proposed model. Source codes of this paper are available on Github https://github.com/DeepLearnXMU/WDCNMT.

pdf bib
Simplifying Neural Machine Translation with Addition-Subtraction Twin-Gated Recurrent Networks
Biao Zhang | Deyi Xiong | Jinsong Su | Qian Lin | Huiji Zhang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

In this paper, we propose an additionsubtraction twin-gated recurrent network (ATR) to simplify neural machine translation. The recurrent units of ATR are heavily simplified to have the smallest number of weight matrices among units of all existing gated RNNs. With the simple addition and subtraction operation, we introduce a twin-gated mechanism to build input and forget gates which are highly correlated. Despite this simplification, the essential non-linearities and capability of modeling long-distance dependencies are preserved. Additionally, the proposed ATR is more transparent than LSTM/GRU due to the simplification. Forward self-attention can be easily established in ATR, which makes the proposed network interpretable. Experiments on WMT14 translation tasks demonstrate that ATR-based neural machine translation can yield competitive performance on English-German and English-French language pairs in terms of both translation quality and speed. Further experiments on NIST Chinese-English translation, natural language inference and Chinese word segmentation verify the generality and applicability of ATR on different natural language processing tasks.

pdf bib
Neural Machine Translation with Decoding History Enhanced Attention
Mingxuan Wang | Jun Xie | Zhixing Tan | Jinsong Su | Deyi Xiong | Chao Bian
Proceedings of the 27th International Conference on Computational Linguistics

Neural machine translation with source-side attention have achieved remarkable performance. however, there has been little work exploring to attend to the target-side which can potentially enhance the memory capbility of NMT. We reformulate a Decoding History Enhanced Attention mechanism (DHEA) to render NMT model better at selecting both source-side and target-side information. DHA enables dynamic control of the ratios at which source and target contexts contribute to the generation of target words, offering a way to weakly induce structure relations among both source and target tokens. It also allows training errors to be directly back-propagated through short-cut connections and effectively alleviates the gradient vanishing problem. The empirical study on Chinese-English translation shows that our model with proper configuration can improve by 0:9 BLEU upon Transformer and the best reported results in the dataset. On WMT14 English-German task and a larger WMT14 English-French task, our model achieves comparable results with the state-of-the-art.

pdf bib
Deconvolution-Based Global Decoding for Neural Machine Translation
Junyang Lin | Xu Sun | Xuancheng Ren | Shuming Ma | Jinsong Su | Qi Su
Proceedings of the 27th International Conference on Computational Linguistics

A great proportion of sequence-to-sequence (Seq2Seq) models for Neural Machine Translation (NMT) adopt Recurrent Neural Network (RNN) to generate translation word by word following a sequential order. As the studies of linguistics have proved that language is not linear word sequence but sequence of complex structure, translation at each step should be conditioned on the whole target-side context. To tackle the problem, we propose a new NMT model that decodes the sequence with the guidance of its structural prediction of the context of the target sequence. Our model generates translation based on the structural prediction of the target-side context so that the translation can be freed from the bind of sequential order. Experimental results demonstrate that our model is more competitive compared with the state-of-the-art methods, and the analysis reflects that our model is also robust to translating sentences of different lengths and it also reduces repetition with the instruction from the target-side context for decoding.

pdf bib
Accelerating Neural Transformer via an Average Attention Network
Biao Zhang | Deyi Xiong | Jinsong Su
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

With parallelizable attention networks, the neural Transformer is very fast to train. However, due to the auto-regressive architecture and self-attention in the decoder, the decoding procedure becomes slow. To alleviate this issue, we propose an average attention network as an alternative to the self-attention network in the decoder of the neural Transformer. The average attention network consists of two layers, with an average layer that models dependencies on previous positions and a gating layer that is stacked over the average layer to enhance the expressiveness of the proposed attention network. We apply this network on the decoder part of the neural Transformer to replace the original target-side self-attention model. With masking tricks and dynamic programming, our model enables the neural Transformer to decode sentences over four times faster than its original version with almost no loss in training time and translation performance. We conduct a series of experiments on WMT17 translation tasks, where on 6 different language pairs, we obtain robust and consistent speed-ups in decoding.

2017

pdf bib
Improving Implicit Discourse Relation Recognition with Discourse-specific Word Embeddings
Changxing Wu | Xiaodong Shi | Yidong Chen | Jinsong Su | Boli Wang
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

We introduce a simple and effective method to learn discourse-specific word embeddings (DSWE) for implicit discourse relation recognition. Specifically, DSWE is learned by performing connective classification on massive explicit discourse data, and capable of capturing discourse relationships between words. On the PDTB data set, using DSWE as features achieves significant improvements over baselines.

2016

pdf bib
Bilingual Autoencoders with Global Descriptors for Modeling Parallel Sentences
Biao Zhang | Deyi Xiong | Jinsong Su | Hong Duan | Min Zhang
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Parallel sentence representations are important for bilingual and cross-lingual tasks in natural language processing. In this paper, we explore a bilingual autoencoder approach to model parallel sentences. We extract sentence-level global descriptors (e.g. min, max) from word embeddings, and construct two monolingual autoencoders over these descriptors on the source and target language. In order to tightly connect the two autoencoders with bilingual correspondences, we force them to share the same decoding parameters and minimize a corpus-level semantic distance between the two languages. Being optimized towards a joint objective function of reconstruction and semantic errors, our bilingual antoencoder is able to learn continuous-valued latent representations for parallel sentences. Experiments on both intrinsic and extrinsic evaluations on statistical machine translation tasks show that our autoencoder achieves substantial improvements over the baselines.

pdf bib
Convolution-Enhanced Bilingual Recursive Neural Network for Bilingual Semantic Modeling
Jinsong Su | Biao Zhang | Deyi Xiong | Ruochen Li | Jianmin Yin
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Estimating similarities at different levels of linguistic units, such as words, sub-phrases and phrases, is helpful for measuring semantic similarity of an entire bilingual phrase. In this paper, we propose a convolution-enhanced bilingual recursive neural network (ConvBRNN), which not only exploits word alignments to guide the generation of phrase structures but also integrates multiple-level information of the generated phrase structures into bilingual semantic modeling. In order to accurately learn the semantic hierarchy of a bilingual phrase, we develop a recursive neural network to constrain the learned bilingual phrase structures to be consistent with word alignments. Upon the generated source and target phrase structures, we stack a convolutional neural network to integrate vector representations of linguistic units on the structures into bilingual phrase embeddings. After that, we fully incorporate information of different linguistic units into a bilinear semantic similarity model. We introduce two max-margin losses to train the ConvBRNN model: one for the phrase structure inference and the other for the semantic similarity model. Experiments on NIST Chinese-English translation tasks demonstrate the high quality of the generated bilingual phrase structures with respect to word alignments and the effectiveness of learned semantic similarities on machine translation.

pdf bib
Variational Neural Discourse Relation Recognizer
Biao Zhang | Deyi Xiong | Jinsong Su | Qun Liu | Rongrong Ji | Hong Duan | Min Zhang
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Variational Neural Machine Translation
Biao Zhang | Deyi Xiong | Jinsong Su | Hong Duan | Min Zhang
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

pdf bib
Bilingually-constrained Synthetic Data for Implicit Discourse Relation Recognition
Changxing Wu | Xiaodong Shi | Yidong Chen | Yanzhou Huang | Jinsong Su
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

2015

pdf bib
Graph-Based Collective Lexical Selection for Statistical Machine Translation
Jinsong Su | Deyi Xiong | Shujian Huang | Xianpei Han | Junfeng Yao
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Bilingual Correspondence Recursive Autoencoder for Statistical Machine Translation
Jinsong Su | Deyi Xiong | Biao Zhang | Yang Liu | Junfeng Yao | Min Zhang
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
Shallow Convolutional Neural Network for Implicit Discourse Relation Recognition
Biao Zhang | Jinsong Su | Deyi Xiong | Yaojie Lu | Hong Duan | Junfeng Yao
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

pdf bib
A Context-Aware Topic Model for Statistical Machine Translation
Jinsong Su | Deyi Xiong | Yang Liu | Xianpei Han | Hongyu Lin | Junfeng Yao | Min Zhang
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

2014

pdf bib
Regularized Structured Perceptron: A Case Study on Chinese Word Segmentation, POS Tagging and Parsing
Kaixu Zhang | Jinsong Su | Changle Zhou
Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics

2013

pdf bib
A Topic-Triggered Language Model for Statistical Machine Translation
Heng Yu | Jinsong Su | Yajuan Lv | Qun Liu
Proceedings of the Sixth International Joint Conference on Natural Language Processing

2012

pdf bib
Translation Model Adaptation for Statistical Machine Translation with Monolingual Topic Information
Jinsong Su | Hua Wu | Haifeng Wang | Yidong Chen | Xiaodong Shi | Huailin Dong | Qun Liu
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2010

pdf bib
Learning Lexicalized Reordering Models from Reordering Graphs
Jinsong Su | Yang Liu | Yajuan Lv | Haitao Mi | Qun Liu
Proceedings of the ACL 2010 Conference Short Papers

pdf bib
Dependency-Based Bracketing Transduction Grammar for Statistical Machine Translation
Jinsong Su | Yang Liu | Haitao Mi | Hongmei Zhao | Yajuan Lv | Qun Liu
Coling 2010: Posters

Search
Co-authors