Jinyang Li


2023

pdf bib
An Investigation of LLMs’ Inefficacy in Understanding Converse Relations
Chengwen Qi | Bowen Li | Binyuan Hui | Bailin Wang | Jinyang Li | Jinwang Wu | Yuanjun Laili
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have achieved remarkable success in many formal language oriented tasks, such as structural data-to-text and semantic parsing. However current benchmarks mostly follow the data distribution of the pre-training data of LLMs. Therefore, a natural question rises that do LLMs really understand the structured semantics of formal languages. In this paper, we investigate this problem on a special case, converse binary relation. We introduce a new benchmark ConvRe focusing on converse relations, which contains 17 relations and 1240 triples extracted from popular knowledge graph completion datasets. Our ConvRE features two tasks, Re2Text and Text2Re, which are formulated as multi-choice question answering to evaluate LLMs’ ability to determine the matching between relations and associated text. For the evaluation protocol, apart from different prompting methods, we further introduce variants to the test text and few-shot example text. We conduct experiments on three popular LLM families and have observed various scaling trends. The results suggest that LLMs often resort to shortcut learning and still face challenges on our proposed benchmark.

pdf bib
Causal Document-Grounded Dialogue Pre-training
Yingxiu Zhao | Bowen Yu | Bowen Li | Haiyang Yu | Jinyang Li | Chao Wang | Fei Huang | Yongbin Li | Nevin Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

The goal of document-grounded dialogue (DocGD) is to generate a response by anchoring the evidence in a supporting document in accordance with the dialogue context. This entails four causally interconnected variables. While task-specific pre-training has significantly enhanced performances on numerous downstream tasks, existing DocGD methods still rely on general pre-trained language models without a specifically tailored pre-training approach that explicitly captures the causal relationships. To address this, we present the first causally-complete dataset construction strategy for developing million-scale DocGD pre-training corpora. Additionally, we propose a causally-perturbed pre-training strategy to better capture causality by introducing perturbations on the variables and optimizing the overall causal effect. Experiments conducted on three benchmark datasets demonstrate that our causal pre-training yields substantial and consistent improvements in fully-supervised, low-resource, few-shot, and zero-shot settings.